Runaway Bay Sports Super Centre

Pool Refurbishment and Sports Medicine Roof Replacement

April 2014

Runaway Bay Sports Centre

Pool refurbishment and Sports Medicine roof replacement

Scope of Works

Pool refurbishment

Electrical - Isolations

- Access electrical switchboard and isolate lighting circuit / power as necessary for all works to be affected in and around indoor pool.
- Disconnect existing lighting and power as necessary to replace purlins and roof sheet.
- Isolate Pool filtration and electrical system

Poolside and adjacent exterior - Isolations

- Remove from site all areas of carpet around pool in readiness for epoxy coating
- Remove from site existing pool fencing. Make good all existing fixing holes
- Allow for all necessary pre-emptive measures to enable the removal and safe storage on site
 of existing aluminium window frames
- Remove pool seating as required to execute the works. To be stored in an adjacent location to be advised

<u>Structure</u>

- Execute and replace lower section of all columns in accordance with Cardno Scope of Work document dated May 2013. Replace columns in sequence as identified. Associated documents are as follows;
 - A11015 SK1
 - A11015 SK2
 - A11015 SK3
 - A11015 SK4
 - A11015 SK5
- Allow for all temperary support requirements to enable removal of windows and columns as required
- Protect the new column sections by shop application of a super durable thermoplastic powder coating as specified by inspec
- Protect the on site weld of the replacement column to the existing column with a protective coating as specified by Inspec
- Undertake spot repair of failed sections of hot dip galvanising in all other locations by providing a protective coating system as specified by InSpec
- Remove and replace all RHS purlins with new steel RHS purlins to match existing sizes. Size 200 * 100 * 4 RHS. <u>Exclude</u> roof purlin assessment work identified in point 4 on Cardno drawing SK5 Replacement Purlins. Replacement purlins to be treated as follows; Abrasive Blast Clean to AS1627.4 Class 2.5

Apply prime coat of Dulux Zincanode 402 to DFT of 75um. Apply intermediate coat of Dulux Duremax GPE to a DFT of 125um. Apply top coat of Dulux Weathermax HBR to a DFT of 100 um. Colour: White

• Execute replacement of columns in accordance with Cardno scope of work (Replacement Column Layout Plan) and

Roofing

- Disconnect, protect and store for reuse all solar heating components
- Disconnect, remove and store Cardiff Air unit. Return unit to Sports facility for their use.
- Demolish and remove from site existing roof sheets and flashings
- Replace roofing including flashings with 125mm Bondor Solar Span or approved equal. Allow for all fixings, expansion joints, flashings, cappings, barges and materials in accordance with manufacturer's instructions
- Reinstall solar heating system to roof, test and commission

Poolside and adjacent exterior – New Works

- Apply high solid coloured epoxy coating with anti-slip media and protective UV resistant polyurethane topcoat to all existing exposed concrete pool surround surfaces. Remove all existing carpet, glue etc and prepare all surfaces prior to application. Achieve and certify slip rating to comply with statutory classification requirements
- Install new stainless steel, semi- frameless glass pool fencing to comply with statutory requirements. Provide matching glass gates with compliant hardware as required. Fixings into existing slab as per structural engineers requirements.
- Remove sections of corrosion from four existing door frames. Repair and rebuild door frames as per documents
- Remove section of corrosion from bottom of stair stringer to mezzanine floor. Repair and protect as per documents
- Reinstall pool seating to existing location

Swimming Pool - Refurbishment

- Pump contents of pool approx 240,000lt
- Acid Wash all tiled areas and regrout all coping tiles to perimeter of pool
- Allow to replace broken tiles within pool where required Allow to supply 5m2 of replacement tiles including installation
- Renew expansion joint within the pool
- Replace broken steps at north eastern location of pool. Powdercoat finish. Achieve and certify slip rating to comply with statutory classification requirements
- Fill pool, chemical balance and re-commission filtration equipment

Electrical – New Works

- Reinstall and connect existing lighting and power as necessary following replacement of purlins and roof sheet.
- Install new cabling and reconnect existing lighting on columns and trusses.
- Reconnect existing pool filtration and electrical system

- Test and commission in accordance with Australian Standards
- Provide certification of all electrical installations as required by the building certifier
- BAS or approved contractor to assess and report on the bonding (earthing) of the pool including any new fencing

Warranties and Manuals

- Upon completion of works provide completion certificates (Form 16's) to enable issuance of Certificate of Classification by building certifier.
- All warranties and maintenance procedures to be provided in bound, A4 binders with subcontract contact lists

Cleaning upon Completion

• Contractor is required to clean all affected spaces including toilets and changing facilities prior to the occupation of the centre by the end user

Sport Medicine roofing replacement

Electrical - Isolations

- Access electrical switchboard and isolate lighting circuit / power as necessary for all works to be affected within building
- Disconnect existing lighting and power as necessary to replace roof sheets

<u>Structure</u>

• Review and repair RHS purlins where corrosion is evident. Undertake spot repair of failed sections of hot dip galvanising by providing a protective coating system as specified by InSpec

<u>Roofing</u>

- Demolish and remove from site existing roof sheets and flashings
- Replace roofing including flashings with 125mm Bondor Solar Span or approved equal. Allow for all fixings, expansion joints, flashings, cappings, barges and materials in accordance with manufacturer's instructions

Electrical – New Works

- Reconnect electrical services and connections in accordance with Australian Standards
- Test and commission electrical services in accordance with Australian Standards
- Provide certification of all electrical installations as required by the building certifier

Warranties and Manuals

- Upon completion of works provide completion certificates (Form 16's) to enable issuance of Certificate of Classification by building certifier
- All warranties and maintenance procedures to be provided in bound, A4 binders with subcontract contact lists

Cleaning upon Completion

• Contractor is required to clean all affected spaces prior to the occupation of the centre by the end user

Roof & Building Service (Qld) Pty Ltd 15 Ferrett St, Eagle Farm, Qld 4009 PO Box 426, Hamilton Central, QLD 4007 p_ 07_3268 5566 f_ 07_3868 4138 e_ enquiries@roofandbuildingservice.com.au ABN 83 009 721 742

RWS/eg QUOTE NO. 15215

12 August 2011

EMAIL TO: megan.vanwanrooy@deta.qld.gov.au

Department of Education & Training Attn – Ms Megan Van Wanrooy PO Box 557 ROBINA QLD 4226

Dear Ms Van Wanrooy,

RE: RUNAWAY BAY SPORTS CENTRE CNR SPORTS DRIVE & MORALA AVENUE RUNAWAY BAY

We refer to your request and our subsequent discussions and a number of site inspections relative to water entry occurring into various areas at the above complex.

Our report along with details of our findings as well as recommendations for rectification and quotations are detailed below.

Photographic details referring to issues involved are attached.

The three areas referred to separately are the Sports Walk, the Dining Hall and Sports Medicine.

SPORTS WALK

Water entry is occurring even in light rain and dew conditions along the steel beam below the box gutter for the full length of approximately 30 lineal metres.

At the junction of the box gutter and the louvered wall, what appears to be a galvanised flashing detail is installed. The flashing on the horizontal section falls back from the box gutter toward the internal areas and it appears that the overlap joints have never been sealed correctly or if previously sealed, the sealant has failed.

This detail extending for the full length and exacerbated at the overlap joints is responsible for the water entry and the onset of heavy rust and early corrosion on the top of the beam.

Roofing Commercial & Industrial

Waterproofing

Concrete Restoration

Protective Coatings

• Quality Assured • Gold Card • Over 80 years experience

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 6 of 498

The box gutter itself although in sound condition structurally, is affected by light to heavy rust in isolated areas and although not contributing to the immediate issues, if left unattended in this manner will finally rot out.

Where the louvered butt joints occur, the previously installed foam or sealant has failed or weathered and although generally not a contributor to the current situation may become so if left in this manner.

In the light of the above details we would recommend the following be carried out.

- Set up an exclusion zone beneath the box gutter in question.
- Access the area internally from a small scissor lift.
- Remove the existing flashing detail.
- Wire brush to clean the top of the steel beam.
- Apply a protective coating of Resene 167 primer.
- Apply two coats of white enamel.
- The above three coat system should provide ongoing protection to these areas.
- Supply and install a new .55 white COLORBOND flashing detail fitted to extend behind the base louvre and continue on an angle toward the box gutter including turning into the box gutter.
- The above flashing detail will ensure that moisture which reaches the angle is discharged toward the box gutter rather than accumulate on the horizontal section of the angle as presently occurring.
- The joints of the angle will be well sealed with construction sealant followed by DUROMASTIC ACS-2 including fibreglass reinforcement approx. 75mm wide centrally placed over each of the lap joints.
- Seal the joints in the bottom fin.
- Reseal the butt joints of the louvres.
- Clean out the box guttering and prime with a heavy application of anticorrosive sealer.

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 7 of 498

- Seal the lap joints and sumps of the box guttering with DUROMASTIC membrane including fibreglass reinforcement.
- Finally apply two applications of DUROMASTIC membrane to the complete length of the guttering including both sides.

Quotations

Our quotations covering the above work are as follows:

Quotation 1 – Complete waterproofing work as specified

\$12,370.00 PLUS 10% G\$7 <u>\$_1,237.00</u>

<u>\$13,607.00</u>

Quotation 2 – Access equipment

\$1,200.00 PLUS 10% GST <u>\$ 120.00</u>

<u>\$1,320.00</u>

Sundry considerations

We also took opportunity to inspect the remainder of this roofing and the following issues were noted.

- 1. A number of the penetrations are built across the pans of the sheeting, causing a severe buildup of water behind the penetration and if left unattended will finally cause water entry.
- 2. The centre cross iap joint is poorly sealed and possibly not correctly underflashed. In heavy and consistent rain conditions these details may be causing water entry at some point in the complex as moisture entering the sidelaps and unable to exit at the endlaps due to the sealant already in place is likely to build up and track toward the box gutter and from there internally.

We advise that further waterproofing works may be required relative to the items referred to immediately above, but these issues should await the rectification of the main waterproofing issues referred to initially.

DINING HALL

The leaks pointed out into the above area were limited to an area over the table tennis tables only.

We understand the roofing profile to be a Trimdek COLORBOND sheet, screw-fixed and the ceiling an insulated panel type.

Where the ceiling sheets butt join, there is evidence throughout the area of possible moisture buildup but the area over the table tennis tables is the only section considered in our following report.

The roof sheeting remains in sound condition, but serious issues relate to the endlaps which have been partially sealed and water entry occurring over the sidelaps above these areas will accumulate at this point and track internally at the butt joints of the ceiling sheeting.

We therefore recommend that the following work be carried out, specifically limited to the leaks over the table tennis tables only.

- To an area approx. 3 lineal metres either side of the tables, clean the endlaps and sidelaps of the roof sheeting.
- Reseal the endlap correctly including removal of surplus sealant.
- Prime the sidelaps extending from the apron flashing at the top of the roof to approx. 2 lineal metres beyond the leaks over the tables.
- Apply DUROMASTIC AC membrane including fibreglass reinforcement over all laps within the area in question.
- The membrane system will be built up with three additional coats of DUROMASTIC AC to provide an elastic barrier able to withstand repeated cycles of movement.
- As both the sidelaps and the endlap in question within the area referred to will be sealed in this manner, water entry would be prevented.

.../5

Quotation

Our quotation for carrying out this work is:

\$8,430.00 PLUS 10% GST <u>\$843.00</u>

\$9,273.00

SPORTS MEDICINE

The roofing to this area was noted to be of a similar construction to that over the Dining Hall, being a COLORBOND Trimdek with the insulated type sheeting.

The reported water entry is occurring in a line along the butt joint of the ceiling sheeting and this equates to a similar situation to that of the Dining Hall where the end lap has been partially sealed, but the sidelaps left open, indicating that moisture excessing the sidelaps and being unable to exit at the endlaps due to being secied it builds up and enters internally.

We would therefore recommend that the following work be carried out.

- To the roof area over the reported leaks only, prime the sidelaps extending from the top of the roof to approx. 3 lineal metres beyond the overlap joint.
- Clean surplus sealant from the overlap joint and ensure the sheeting is pinned correctly.
- Seal all overlaps and endlap in question with the DUROMASTIC AC membrane system including fibreglass reinforcement and three coats of membrane as previously specified.

Quotation

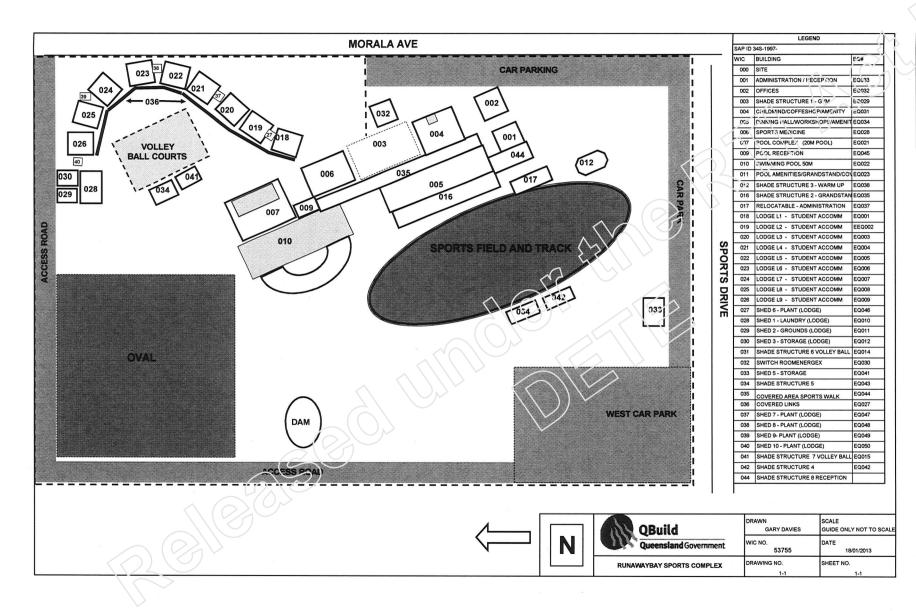
Our quotation for carrying out this work is:

\$8,120.00 PLUS 10% GST <u>\$ 812.00</u>

<u>\$8,932.00</u>

.../6

NOTES APPLICABLE TO OUR SUBMISSION


- 1. All work in normal weekday working hours 7.00am to 3.30pm.
- 2. Access to the areas is via ladders tied off, except for the access to the box gutter to the Sports Hall which will involve a small scissor lift.
- 3. Continuous access to the areas is required.
- 4. Whilst working adjacent the perimeter of any roof and within 2 lineal metres, harnesses will be used attached to safety lines fixed to structural members of the roofing. In this regard, no allowance is included or necessary for edge protection as the majority of the work is well away from the perimeter.
- 5. Photographic details are attached.

We trust that the above is clear and assure you of our cooperation in performance of the work subject to our contract conditions set out on the reverse side of page one and await your further advice.

Yours Faithfully, ROOF & BUILDING SERVICE (QLD.) PTY LTD

Regards, Ross Sanderson

tel (07) 3268 5566 > fax (07) 3868 4138 > email <u>ross@roofandbuildingservice.com.au</u> address PO Box 426, Hamilton Central, Queensland 4007

SINE LEGEND SAP ID WIC# BUILDING EQ# 000 SHEDS 000 FENCING 000 GRASS & LANDSCAPING 000 WATER TANKS 000 POLE LIGHTING & SERVICES 000 SHADE SAILS & COVERS 000 ROADS & PATHWAYS 000 PLAYGROUNDS & SPORTS

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 12 of 498

Pages 13 through 83 redacted for the following reasons: s.68(4)(c) – subject to copyright

24 September 2013

Frank Beeson Chief Engineer Runaway Bay Sport and Leadership Excellence Centre Cnr Sports Dr & Morala Ave RUNAWAY BAY QLD 4216 Our ref: 41/26317/452195 Your ref:

Dear Frank,

Landfill Gas Monitoring September 2013 Monitoring Event

1 Introduction

GHD was commissioned by The Runaway Bay Sport and Leadership Excellence Centre (RBSLEC) to undertake a round of landfill gas monitoring at the former landfill site, now operating as the RBSLEC, located at the corner of Morala Avenue and Sports Drive, RUNAWAY BAY, Queensland (hereafter referred to as the site).

This round of monitoring was conducted on 11 September 2013 and incorporated structure locations nominated within the Landfill Gas Monitoring Map (Brisbane City Council, 2001) and associated site Sketch. A copy of these site maps is provided as Attachments 1 and 2.

GHD has conducted landfill gas monitoring at the request of the RBSLEC since 2007. The previous landfill gas monitoring event was conducted by GHD in May 2013.

This letter is subject to and should be read in conjunction with the limitations detailed in Section 7.

2 Methodology

The landfill gas monitoring was undertaken on 11 September 2013 by a suitably qualified Environmental Scientist using two calibrated portable field measurement units (an Eagle Gas meter and a GA2000 landfill gas meter) to obtain instantaneous measurements of the methane, oxygen, carbon monoxide and hydrogen sulphide concentrations. Calibration certificates for this equipment are included as Attachment 2.

This assessment included monitoring 137 structures locations (including subsurface electrical pits, light poles, stormwater pits and some site buildings). These locations were located across the site and were identified from the site map provided as Attachment 1. Surface emission monitoring and monitoring within all site buildings was not conducted under this scope of work. 4 soil atmosphere gas wells for the site were not able to be located along the eastern boundary of the site (Morala Avenue).

Measurements were collected by placing a length of tubing (connected to the meter) within the structure and noting the range of measurements over a 1 minute period (or until a peak reading was achieved). In line with previous monitoring rounds conducted at the site, a trigger level of 12,500 ppm methane (1.25%)

v/v or 25% of the LEL of methane) was adopted for this monitoring round (from the subsurface guideline value from *Environmental Guidelines: Solid Waste Landfills* (NSW EPA, 1996).Results tables for this round are provided in Attachment 3.

3 Results

Results tables for this round are provided in Attachment 4:

- Table 1 General Observations;
- Table 2 Boundary Soil Atmosphere Gas Wells Results;
- Table 3 Sub-Surface Structure Emission Results

Concentrations of carbon monoxide and hydrogen sulphide at all locations monitored were as follows:

- Carbon monoxide (CO): 0 ppm; and
- Hydrogen sulphide (H₂S): 0 ppm.

Oxygen levels ranged from 15.8 % v/v to 20.9 %v/v at ail locations monitored.

It should be understood that the instrument used to complete the monitoring is not methane specific, rather it monitors for a range of hydrocarbons and other easily flammable components (collectively referred to as "flammable gas"). It is common practice in the waste industry to monitor for flammable gas at landfill sites and use the results as a proxy for methane emissions. It should therefore be understood that the "methane" results detailed below are essentially indicative of "flammable gas".

Methane levels less than the adopted trigger level (12,500 ppm methane) were detected within all structure locations included in this round of monitoring, however a number of other service pit locations identified methane concentrations greater than 1000 ppm during the 11 September monitoring round indicating that methane is entering and accumulating within these structures at levels that require on-going monitoring. This included:

- E3 (an electrical pit located north west of the beach volley ball courts) at 1850 ppm methane;
- E24 left and right (electrical pits located within the roundabout at the southern boundary entrance of the site) at 1650 ppm and 1400 ppm respectively;
- E25 (an electrical pit located in the northern end of the west car park) at 3,900 ppm methane;
- E31 (an electrical pit located in centre of the west car park) at 6,500 ppm methane.

4 Quality Assurance / Quality Control Procedures

In order to have confidence in the landfill gas monitoring data generated during the landfill gas monitoring rounds, suitable quality assurance and quality control procedures were used. The quality assurance and quality control procedures used during the September 2013 monitoring round included the following:

• The monitoring equipment used was calibrated prior to its use on-site and was verified in the field prior to use each day and during the completion of the monitoring by monitoring personnel.

Instrument specifications and calibration certificates for the monitoring instrumentation are included in Attachment 4;

• Monitoring was conducted by a suitably experienced environmental scientist with reference to the Site Based Management Plan and the *Environmental Guidelines: Solid Waste Landfills* (NSW EPA, 1996).

5 Conclusions

Based on the results of the 11 September 2013 monitoring round, the following conclusions are made:

- The Site continues to generate landfill gas containing methane;
- Monitoring of site structures was not exhaustive and was limited to those locations detailed within Section 2 and included within the attached results tables (the four gas wells located along Morala Avenue were unable to be monitored as they were not able to be located due to grass coverage);
- All nominated structure monitoring locations able to be accessed on 11 September 2013 were less than the relevant adopted trigger level (12,500 ppm methane) during this round of monitoring. However methane concentration was greater than 1000 ppm within several electrical pits locations across the site and should be scrutinised in future monitoring rounds.

6 Recommendations

Based on the conclusions in Section 5 above, it is recommended that:

- 1. Quarterly landfill gas monitoring be scheduled for all site locations to continue assessing trends in methane levels for the site.
- 2. The barricading placed around electrical pit E3 following the detection of elevated methane concentrations within that structure in April 2013 may be removed as the methane level does not appear to have increased since the May monitoring event. This location should however continue to be regularly monitored to confirm methane is not accumulating at levels greater than the adopted trigger level.

7 Limitations and Quantifications of Letter

This letter has been prepared by GHD for Runaway Bay Sport and Leadership Excellence Centre and may only be used and relied on by Runaway Bay Sport and Leadership Excellence Centre for the purpose agreed between GHD and the Runaway Bay Sport and Leadership Excellence Centre as set out in section 1 of this Report.

GHD otherwise disclaims responsibility to any person other than Runaway Bay Sport and Leadership Excellence Centre arising in connection with this letter. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this letter were limited to those specifically detailed in the letter and are subject to the scope limitations set out in the letter.

41/26317/452195

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 86 of 498

The opinions, conclusions and any recommendations in this letter are based on conditions encountered and information reviewed at the date of preparation of the letter. GHD has no responsibility or obligation to update this letter to account for events or changes occurring subsequent to the date that the letter was prepared.

The opinions, conclusions and any recommendations in this letter are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points. Investigations undertaken in respect of this letter are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this letter.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this letter. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this letter if the site conditions change.

If you have any questions or require any further details, please don't hesitate to contact Adam Major or myself.

Yours sincerely,

Report Prepared By:

Belinda Oberia

Environmental Scientist (07) 3316 3954

GHD Pty Ltd

Approved for Issue

Adam Major

Principle Environmental Engineer (07) 3316 3587

GHD Pty Ltd

Attachment 1: Site Map of Landfill Gas Monitoring Locations

Attachment 2: Site sketch of additional service pits monitored

Attachment 3: Tables of results

Table 1. General Weather Conditions and Site Observations

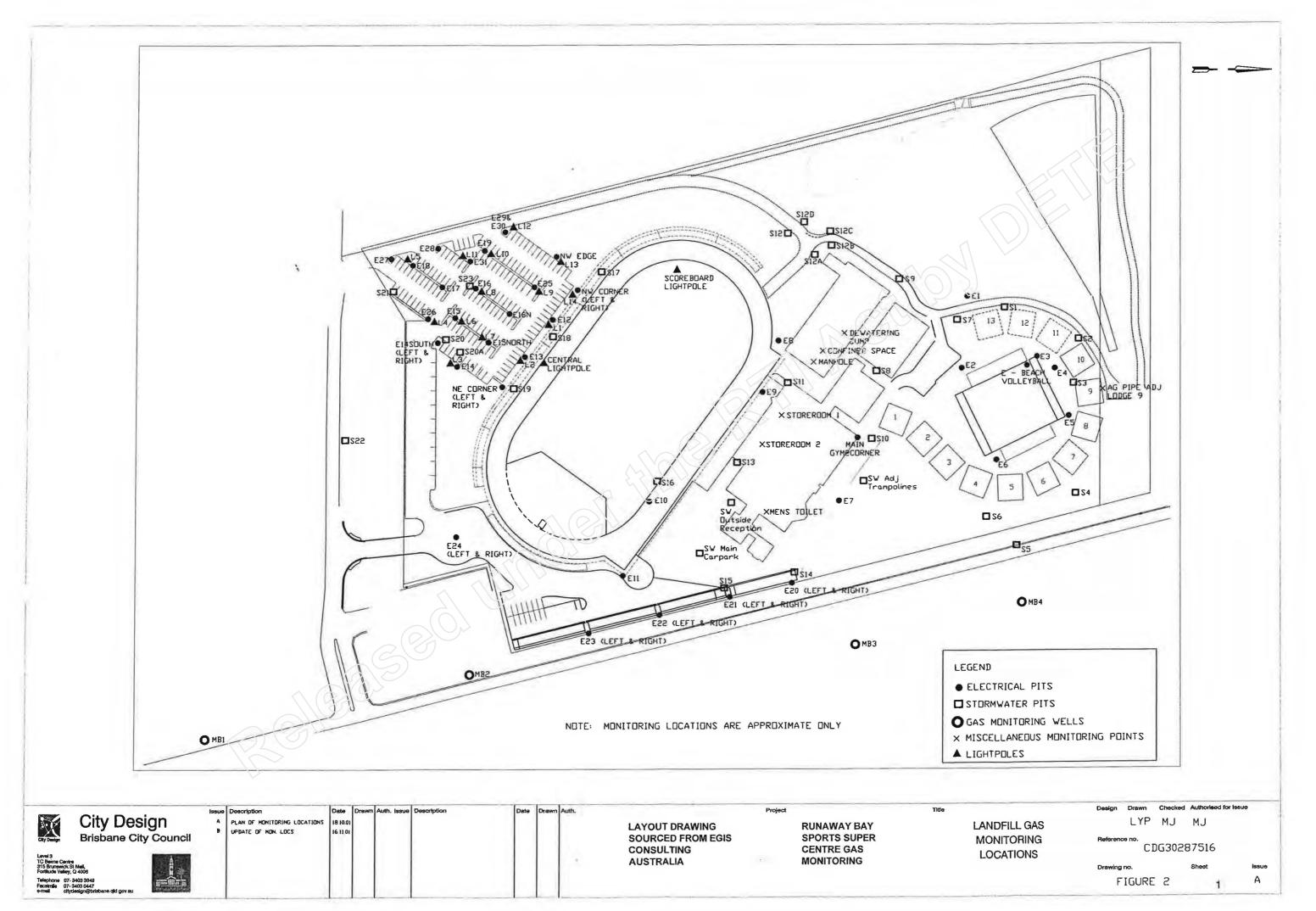
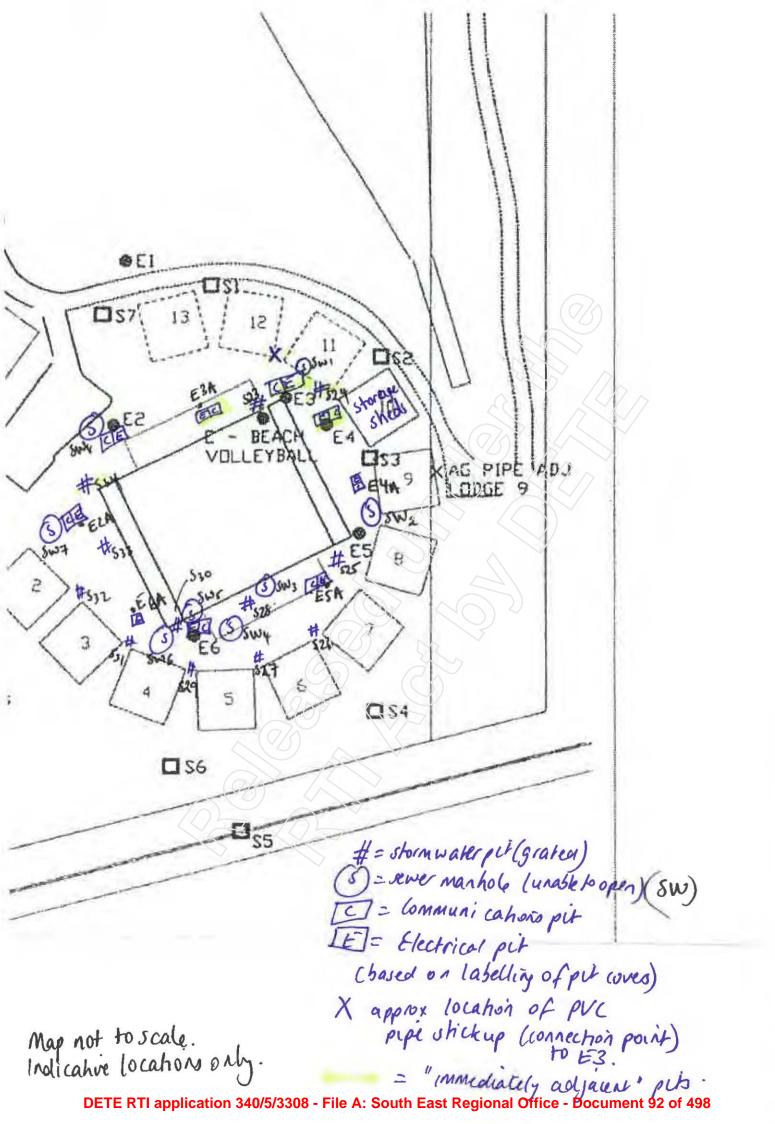

Table 2. Boundary Soil Atmosphere Gas Monitoring Wells

Table 3. Sub-surface Structure Emissions.

Attachment 3: Calibration Certificates and Specification Sheet for Landfill Gas Meters

Attachment 1: Site Map of Landfill Gas Monitoring Locations



Attachment 2: Site sketch of additional service pits monitored

41/26317/452195

7

Attachment 3: Tables of results

Table 1. General Weather Conditions and Site Observations

Table 2. Boundary Soil Atmosphere Gas Monitoring Wells

Table 3. Sub-surface Structure Emissions.

TABLE 1: General Weather Conditions and Site Observations

Date	Atmosphe	eric Pressure	Wind Speed	Wind Direction (degrees)	Temp.	Weath	er Conditions	Rainfall Over Preceding Week	Comments	Initia!s
	(hPa)	Rising/Falling	(km/h)		(°C)	Current	Preceding Week	(mm)	6	$\sum $
11-Sep-13	1008.2	Falling	17	45	26.8	Fine with 2/8 cloud cover and a NE breeze	Mostly fine	0.8	Full site	во

Notes

Atmospheric pressure, wind speed/ direction, temperature and daily rainfall data to be obtained from the Bureau of Meteorology, Gold Coast Seaway Station (No 40764.)

Runaway Bay SSC gas results, General Info

Runaway Bay Former Landfill: Landfill Gas Monitoring for Runaway Bay Sport and Leadership Excellence Centre

Location	Parameter	Units	Sampling Date
Location	Parameter	Units	11-Sep-13
	Boundary Wells	6	
MW1	CH ₄	% (v/v)	NM
	H ₂ S	ppm	NM
	O ₂	% (v/v)	NM
MW2	CH ₄	% (v/v)	NM
	H ₂ S	ppm	NM
	O ₂	% (v/v)	NM
MW3	CH ₄	% (v/v)	NM
	H ₂ S	ppm	NM
	O ₂	% (v/v)	NM
MW4	CH ₄	% (v/v)	NM
	H ₂ S	ppm	NM
	O ₂	% (v/v)	NM

TABLE 2: Boundary Soil Atmosphere Gas Monitoring Wells

Notes:

Methane Trigger Level = 1.25 % v/v (Environmental Guidelines: Solid Waste Landfills, NSW EPA, 1996)

Shading indicates exceedance of trigger level

Bold indicates detection of methane

NM = location not monitored (restricted acess or not located)

Runaway Bay SSC gas results, Soil Gas Wells

25/09/2013

Location	Parameter	Units	11-Sep-13
E1	CH ₄	ppm	< 20
	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
E2	CH ₄	ppm	280
	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
C2	CH ₄	ppm	180
	H₂S	ppm	0
	0 ₂	% (v/v)	20.9
E2a	CH ₄	ppm	350
	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
C2a	CH ₄	ppm	200
	H₂S	ppm	0
	O ₂	% (v/v)	20.9
E3	CH ₄	ppm	1850
	H₂S	ppm	0
20	O ₂	% (v/v)	20.0
23		ppm	550
	H₂S O₂	ppm	0
	O ₂	% (v/v)	20.9
E3a	CH₄	ppm	530
	H ₂ S O ₂	ppm	0
20-	-	% (v/v)	20.9
C3a	CH ₄	ppm	330
	H ₂ S O ₂	ppm	0
- 4	_	% (v/v)	20.9
Ξ4	CH ₄	ppm	410
	H ₂ S O ₂	ppm	0 20.9
24	-	% (v/v)	
C4		ppm	260
	H ₂ S O ₂	ppm	0 20.9
C4a		% (v/v)	
_4a	CH ₄	ppm	240
	H ₂ S O ₂	ppm % (v/v)	0 20.9
E5a	CH ₄	ppm	230
-54	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
C5a	CH ₄	ppm	200
554	H ₂ S	ppm	200
	O ₂	% (v/v)	20.9
Ξ6	CH ₄	ppm	370
	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
26	CH ₄	ppm	270
	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
	CH ₄	ppm	230
	H ₂ S	ppm	200 I
	0 ₂	% (v/v)	20.9
7	CH4	ppm	200
	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
8	CH ₄	ppm	60
	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
E 9	CH ₄	ppm	60
-	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
E9A	CH ₄	ppm	100
	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9

Runaway Bay SSC gas results, Ambient- Structures

Runaway Bay Former Landfill: Landfill Gas Monitoring for Runaway Bay Sport and Leadership Excellence Centre	е
TABLE 3: Sub -Surface Structure Emissions	

Location	Parameter	Units	11. Con. 10
540	011		11-Sep-13
E10	CH ₄	ppm	160
	H ₂ S O ₂	ppm	0
E104	_	% (v/v)	20.9
E10A	CH ₄	ppm	210
	H_2S O_2	ppm	0 20.9
F 44	-	% (v/v)	
E11	CH ₄	ppm	280
	H ₂ S O ₂	ppm % (v/v)	0 20.9
E12	CH ₄		1200
EIZ		ppm	
	H ₂ S O ₂	ppm % (v/v)	0 20.9
E13	CH ₄		310
E13	H ₂ S	ppm	0
	0 ₂	ppm % (v/v)	20.9
E14	CH ₄		NM
E14	H ₂ S	ppm	NM
	O ₂	ppm % (v/v)	NM
E14			NM
E14 South Left	UH₄ H₂S	ppm	NM
Journ Leit	H ₂ 5 O ₂	ppm % (v/v)	NM
E14	CH ₄		NM
	H ₂ S	ppm	NM
South Right	O ₂	ppm % (v/v)	NM
E15	CH ₄		310
EIS	H₂S	ppm	0
	O ₂	ppm % (v/v)	20.9
E15	CH ₄		850
North	H ₂ S	ppm	0
North	O ₂	ppm % (v/v)	20.9
E16	CH ₄		310
LIO	H ₂ S	ppm	0
	O ₂	ppm % (v/v)	20.9
E16 North	CH ₄	ppm	270
210110111	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
E17	CH_4	ppm	450
	H ₂ S	ppm	0
	0 ₂	% (v/v)	20.9
E18	CH₄ H₂S	ppm	210
	0 ₂	ppm % (v/v)	20.9
E19	CH ₄	ppm	310
	H ₂ S	ppm	0
	O ₂	% (v/v)	2.0.9
E20	CH ₄	ppm	100
Left	H ₂ S	ppm	0
500	0 ₂	% (v/v)	20.9
E20 Bight	CH ₄ H ₂ S	ppm	100
Right	0 ₂	noq % (v/v)	0 20.9
E21	CH ₄	ppm	100
Left	H ₂ S	ppm	0
	0 ₂	% (v/v)	20.9
E21	CH ₄	ppm	100
Right	H₂S	ppm	0
	0 ₂	% (v/v)	20.9
E22	CH4	ppm	NM
Left	H ₂ S O ₂	ppm % (v/v)	NM
E22	CH ₄	% (v/v)	NM NM
E22 Right	H ₂ S	ppm ppm	NM
	O ₂	% (v/v)	NM
E23	CH ₄	ppm	30
Left	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
E23	CH ₄	ppm	30
Right	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9

Runaway Bay SSC gas results, Ambient- Structures

25/09/2013

Location	Parameter	Units	11-Sep-13
E24	CH ₄	ppm	1650
_eft	H ₂ S	ppm	0
	O ₂	% (v/v)	15.8
E24	CH ₄	ppm	1400
Right	H ₂ S O ₂	ppm % (v/v)	0 16.5
25	CH ₄	ppm	3900
	H ₂ S	ppm	0
	O ₂	% (v/v)	20.1
26	CH ₄	ppm	310
	H ₂ S	ppm	0
	0 ₂	% (v/v)	20.9
27	CH ₄	ppm	210
	H ₂ S O ₂	ppm % (v/v)	0 20.9
28	CH₄	ppm	NM
20	H ₂ S	ppm	NM
	0 ₂	% (v/v)	NM
29	CH ₄	ppm	210
	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
30	CH ₄	ppm	210
	H ₂ S O ₂	ppm % (v/y/)	0
31	O₂ CH₄	% (v/v) ppm	20.9 6500
.51	H ₂ S	ppm	0
	O ₂	% (v/v)	20.7
Vest Car park	CH ₄	ppm	200
NE Corner	H ₂ S	ppm	0
	0 ₂	% (v/v)	20.9
Vest Car park	CH ₄	ppm	200
eft NE Corner	H₂S	ppm	0
	O ₂	% (v/v)	20.9
Vest Car park		ppm	850
Right NW Corner	H ₂ S O ₂	ppm % (v/v/)	0 20.9
Vest Car park	CH ₄	% (v/v) ppm	20.9
NW Corner	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
Vest Car park	CH ₄	ppm	270
NW Edge	H₂S	ppm	0
	O ₂	% (v/v)	20.9
Central Light Pole	CH ₄	ppm	200
	H₂S	ppm	0
	O ₂	% (v/v)	20.3
Scoreboard light Pole	CH ₄ H ₂ S	ppm	270
ole	O ₂	ppm % (v/v)	20.9
Ag pip adj Lodge 9	CH ₄ H ₂ S	ppm	
	O ₂	ppm % (v/v)	NM
61	CH ₄	ppm	NM
	H ₂ S	ppm O	NM
	O ₂	% (\v/v)	NM
32	CH4	ppm	NM
	H₂S	ppm	NM
	O ₂	% (v/v)	NMi
33	CH ₄	ppm	210
	H₂S	ppm	0
	0 ₂	% (v/v)	20.9
54	CH ₄ H ₂ S	ppm	NM
	H ₂ S O ₂	ppm % (v/v)	NM NM
5	CH ₄	% (v/v) ppm	100
~~	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
6	CH ₄	ppm	100
	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
67	CH ₄	ppm	100
	H ₂ S	ppm	0
	O ₂		

Runaway Bay SSC gas results, Ambient- Structures

Leasting	Bereret	Units			
Location	Parameter	Units	11-Sep-13		
S8	CH4	ppm	100		
	H₂S	ppm	0		
80	O ₂ CH ₄	% (v/v)	20.9		
S9	CH₄ H₂S	ppm	100 0		
	O ₂	ppm % (v/v)	20.9		
S10	CH ₄	ppm	120		
	H ₂ S	ppm	0		
	O ₂	% (v/v)	20.9		
S11	CH₄	ppm	60		
	H ₂ S	ppm	0		
	0 ₂	% (v/v)	20.9		
S12	CH ₄ H ₂ S	ppm	210 0		
	0 ₂	ppm % (v/v)	20.9		
S12A	CH ₄	ppm	210		
0127	H ₂ S	ppm	0		
	O ₂	% (v/v)	20.9		
S12B	CH ₄	ppm	210		
	H ₂ S	ppm	0		
	O ₂	% (v/v)	20.9		
S12C	CH ₄	ppm	210		
	H ₂ S O ₂	ppm	0		
2120	O ₂ CH₄	% (v/v)	20.9		
S12D	H ₂ S	ppm	210 0		
	O ₂	ppm % (v/v)	20.9		
S13	CH ₄	ppm	20.3		
	H ₂ S	ppm	0		
	O ₂	% (v/v)	20.9		
S14	CH₄	ppm	100		
	H ₂ S	ppm	0		
	O ₂	% (v/v)	20.9		
S15	CH ₄	ppm	100		
	H₂S	ppm	0		
0.4.0	O ₂	% (v/v)	20.9		
S16	CH ₄ H ₂ S	ppm	160		
	П ₂ 3 О ₂	ppm % (v/v)	0 20.9		
S17	CH ₄	ppm	210		
011	H ₂ S	ppm	0		
	O ₂	% (v/v)	20.9		
S18	CH ₄	ppm	210		
	H ₂ S	ppm	0		
	O ₂	% (v/v)	20.9		
S19	CH₄	ppm	200		
	H₂S	ppm	6		
200	0 ₂	% (v/v)	20.9		
S20	CH ₄	ppm	210		
	H ₂ S O ₂	ppm % (v/v)	0 20.9		
S20A	CH ₄	% (v/v)	20.9		
	H ₂ S	ppm	0		
	O ₂	% (\//V)	20.9		
S21	CH4	çρn.	210		
	H ₂ S	pom			
	O ₂	% (v/·/)	20.9		
522	CH ₄	ppm	180		
	H₂S	ppm	0		
200	O ₂	% (v/v)	20.9		
523	CH ₄	ppm	200		
	H ₂ S O ₂	ppm % (v/v/)	0 20.9		
524	CH ₄	% (v/v)	20.9		
<i></i>		ppm ppm	200		
	O ₂	% (v/v)	20.9		
S25	CH ₄	ppm	20.3		
	H ₂ S	ppm	0		
	O ₂	% (v/v)	20.9		
S26	CH ₄	ppm	200		
	H ₂ S	ppm	0		
	O ₂	% (v/v)	20.9		

Runaway Bay SSC gas results, Ambient- Structures

25/09/2013

Location	Parameter	Units	
Location	Tarameter	Units	11-Sep-13
S27	CH ₄	ppm	200
	H₂S	ppm	0
200	O ₂ CH ₄	% (v/v)	20.9
S28	H ₂ S	ppm ppm	200 0
	O ₂	% (v/v)	20.9
S29	CH ₄	ppm	200
	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
S30	CH ₄	ppm	200
	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
S31	CH ₄	ppm	200
	H ₂ S	ppm	0
	0 ₂	% (v/v)	20.9
S32	CH ₄	ppm	200
	H₂S	ppm	0
200	O ₂	% (v/v)	20.9
533	CH ₄	ppm	200
	H ₂ S O ₂	ppm % (v/v)	0 20.9
534	CH₄		20.9
	H ₂ S	ppm ppm	0
	O ₂	% (v/v)	20.9
SW Outside	CH ₄	ppm	200
reception	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
SW Main Carpark	CH ₄	ppm	100
	H ₂ S	ppm	0
	0 ₂	% (v/v)	20.9
SW Adjacent	CH ₄	ppm	100
rampolines	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
Store Room 1	CH ₄	ppm	NM
	H ₂ S	ppm	NM
	O ₂	% (v/v)	NM
Store Room 2	CH ₄	ppm	NM
	H₂S	ppm	NM
	0 ₂	% (v/v)	NM
Vens toilet main entrance		ppm	100
entrance	H ₂ S O ₂	ppm % (v/s/)	0 20.9
		% (v/v)	240
Electrical pit Beach Volleyball	H ₂ S	ppm ppm	0
Volicyball	O ₂	% (v/v)	20.9
Dewatering Sump	CH ₄	ppm	200
sonatoning outlip	H ₂ S	ppm	
	02	% (v/v)	20.9
Confined Space	CH ₄	ppm	200
	H ₂ S	ppm	0
	O ₂	% (v/v)	20.9
Manhole		% (v/v)	
Manhole	O ₂	% (v/v) ppm ppm	20.9
Manhole	O ₂ CH ₄	ppm ppm	20.9 200
	O ₂ CH ₄ H ₂ S	ppm	20.9 200 (i
	$\begin{array}{c} O_2\\ CH_4\\ H_2S\\ O_2\\ CH_4\\ H_2S\\ \end{array}$	ppm ppm % (\//V)	20.9 200 0 20.9
_1	O ₂ CH ₄ H ₂ S O ₂ CH ₄	ррт ррт % (v/v) ррт	20.9 200 6 20.9 210
_1	$\begin{array}{c} O_2 \\ CH_4 \\ H_2 S \\ O_2 \\ CH_4 \\ H_2 S \\ O_2 \\ CH_4 \\ CH_4 \\ CH_4 \\ \end{array}$	ppm ppm % (\/\v) ppn ppm	20.9 200 C 20.9 210 C 20.9 210 C
_1	O_2 CH_4 H_2S O_2 CH_4 H_2S O_2 CH_4 H_2S O_2 CH_4 H_2S O_2	ррт ррт % (v/v) ррт % (v/v) ррт у (v/v) ррт ррт	20.9 200 0 20.9 210 0 20.9 210 0 0 0
.1 .2	$\begin{array}{c} O_2 \\ CH_4 \\ H_2 S \\ O_2 \\ O_2 \\ \end{array}$	ppm ppm % (v/v) ppm % (v/v) ppm % (v/v) ppm	20.9 200 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9
.1 .2	$\begin{array}{c} O_2 \\ CH_4 \\ H_2 S \\ O_2 \\ CH_4 \\ \end{array}$	ррт ррт % (v/v) ррт % (v/v) ррт % (v/v) ррт % (v/v) ррт % (v/v) ррт	20.9 200 6 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 210 0 210 0 210 0 210 0 210 0 210 0 210 0 210 0 210 0 210 0 210 0 210 0 210 21
.1 .2	$\begin{array}{c} O_2 \\ \hline O_2 \\ CH_4 \\ \hline H_2 S \\ O_2 \\ CH_4 \\ \hline H_2 \\ CH_4 \\ \hline H_2 \\ CH_4 \\ \hline H_2 \\ CH_4 \\ CH_4 \\ \hline H_2 \\ CH_4 \\ \hline H_2 \\ CH_4 \\ \hline H_2 \\ CH_4 \\ CH_4 \\ \hline H_2 \\ CH_4 \\ CH_4 \\ \hline H_2 \\ CH_4 \\ $	ррт ррт % (v/v) ррт % (v/y) ррт % (v/y) ррт % (v/v) ррт % (v/v) ррт	20.9 200 0 20.9 210 0 20.9 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9
_1 _2 _3	$\begin{array}{c c} O_2 \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2 S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2 S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2 S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2 S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2 S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2 S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2 S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2 S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2 S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2 S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2 S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2 S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2 S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2 S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2 \\ \hline CH_4 \\ \hline H_2 \\ \hline CH_4 \\ \hline H_2 \\ \hline CH_4 \\ \hline$	ррт ррт % (v/v) ррт % (v/v) ррт % (v/v) ррт % (v/v) ррт % (v/v) ррт % (v/v)	20.9 200 6 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9
_1 _2 _3	$\begin{array}{c} O_2 \\ CH_4 \\ H_2 S \\ O_2 \\ CH_4 \\ H_3 S \\ O_2 \\ CH_4 \\ H_4 \\ S \\ O_2 \\ CH_4 \\ C$	ppm ppm % (v/v) ppm	20.9 200 6 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210
_1 _2 _3	$\begin{array}{c} O_2 \\ CH_4 \\ H_2S \\ O_2 \\ CH_4 \\ H_2 \\ CH_4 \\ CH$	ppm ppm % (v/v) ppm	20.9 200 6 20.9 210 0 0 0 20.9 210 0 0 0 20.9 210 0 0 0 0 20.9 210 0 0 0 0 0 0 0 0 0 0 0 0 0
_1 _2 _3 _4	$\begin{array}{c} O_2 \\ CH_4 \\ H_2S \\ O_2 \\ O_2 \\ CH_4 \\ H_2 \\ O_2 \\ $	ppm ppm % (v/v)	20.9 200 6 20.9 210 0 20.9 20.9 210 0 20.9 210 0 20.9 20
_1 _2 _3 _4	$\begin{array}{c} O_2 \\ CH_4 \\ H_2S \\ O_2 \\ CH_4 \\ H_2 \\ CH_4 \\ CH$	ppm % (v/v) ppm ppm ppm % (v/v) ppm ppm	20.9 200 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 210 0 210 210 0 210 210
_1 _2 _3 _4	$\begin{array}{c} O_2 \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2S \\ \hline O_2 \\ \hline CH_4 \\ \hline CH_4$	ppm ppm ppn ppm ppm ppm ppm % (v/v) ppm ppm % (v/v) ppm ppm ppm % (v/v) ppm ppm % (v/v) ppm % (v/v) ppm % (v/v) ppm % (v/v) ppm % ppm ppm	20.9 200 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 210 0 20.9 210 0 20.9 210 0 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 0 20.9 210 0 0 20.9 210 0 0 0 20.9 210 0 0 0 20.9 210 0 0 0 0 0 0 0 0 0 0 0 0 0
_1 _2 _3 _4 _5	$\begin{array}{c} O_2 \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2S \\ \hline O_2 \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2S \\ \hline O_2 \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2S \\ \hline O_2 \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2S \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2S \\ \hline O_2 \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2S \\ \hline O_2 \\ \hline$	ppm ppm ppm ppm ppm ppm ppm ppm % (v/v) ppm ppm % (v/v) ppm ppm ppm % (v/v)	20.9 200 0 20.9 210 0 20.9 20.9 210 0 0 20.9 20.
Manhole L1 L2 L3 L4 L5 L6	$\begin{array}{c} O_2 \\ \hline O_2 \\ \hline CH_4 \\ \hline H_2S \\ \hline O_2 \\ \hline CH_4 \\ \hline CH_4$	ppm ppm ppn ppm ppm ppm ppm % (v/v) ppm ppm % (v/v) ppm ppm ppm % (v/v) ppm ppm % (v/v) ppm % (v/v) ppm % (v/v) ppm % (v/v) ppm % ppm ppm	20.9 200 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 210 0 20.9 210 0 20.9 210 0 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 20.9 210 0 0 20.9 210 0 0 20.9 210 0 0 0 20.9 210 0 0 0 20.9 210 0 0 0 0 0 0 0 0 0 0 0 0 0

Runaway Bay SSC gas results, Ambient- Structures

25/09/2013

	_				
Location	Parameter	Units	11-Sep-13		
_7	CH₄	ppm	210		
	H ₂ S	ppm	0		
	O ₂	% (v/v)	20.9		
_8	CH₄	ppm	210		
	H ₂ S	ppm	0		
	O ₂	% (v/v)	20.9		
_9	CH₄	ppm	210		
	H ₂ S	ppm	0		
	0 ₂	% (v/v)	20.9		
.10	CH₄	ppm	210		
	H ₂ S	ppm	0		
	0 ₂	% (v/v)	20.9		
.11	CH₄	ppm	210		
	H ₂ S	ppm	0		
	0 ₂	% (v/v)	20.9		
.12	CH ₄		210		
.12	H ₂ S	ppm	0		
	O ₂	ppm % (v/v/)	20.9		
.13		% (v/v)	20.9		
.10	CH ₄	ppm			
	H ₂ S O ₂	ppm % (v/dv)	0		
4.4		% (v/v)	20.9		
_14		ppm	210		
	H₂S	ppm	0		
	O ₂	% (v/v)	20.9		
Vestern Carpark	CH ₄	ppm	60		
Central Stairs	H₂S	ppm	0		
	O ₂	% (v/v)	20.9		
	CH ₄	ppm	NM		
Storage Containers		ppm	NM		
western carpark	0 ₂	% (v/v)	NM		
W-Beach	CH ₄	ppm	200		
Volleyball	H ₂ S	ppm	0		
	O ₂	% (v/v)	20.9		
	CH ₄	ppm	NM		
Starage Containers	H ₂ S	ppm	NM		
behind lodges	O ₂	% (v/v)	NM		
	CH ₄	ppm	NM		
Storage shed	H ₂ S	ppm	NM		
southern end track		% (v/v)	NM		
SW1	CH₄	ppm	240		
	H ₂ S	ppm	0		
	0 ₂	% (v/v)	20.9		
SW2	CH ₄	ppm	240		
	H ₂ S		0		
	O ₂	ppm % (v/v)	20.3		
SW3	CH₄		20.9		
J¥¥ J	UH₄ H₂S	ppm	0		
		ppm % (v/h/)			
214/4	0 ₂	% (v/v)	20.9		
SW4	CH ₄	ppm	200		
	H₂S	ppm	0		
	0 ₂	% (v/v)	20.9		
SW5	CH ₄	ppm	200		
	H₂S	ppm	0		
	0 ₂	% (\/v)	20.9		
	CH ₄	ppn.	200		
SW6			0		
SW6	H ₂ S	pom			
SW6	H ₂ S O ₂	mcq % (v/v)	20.9		
	O ₂	% (v/y) ppm	20.9		
	O ₂ CH ₄	% (v/y) ppm ppm	20.9 240		
SW7	O ₂ CH ₄ H ₂ S O ₂	% (v/v) ppm ppm % (v/v)	20.9 240 0 20.9		
SW6 SW7 SW8	O ₂ CH ₄ H ₂ S	% (v/y) ppm ppm	20.9 240 0		

Notes: Methane Trigger Level = 1.25 % v/v or 12,500 ppm (Environmental Guidelines: Solid Waste Landfills, NSW EPA, 1996)

Shading indicates exceedance of trigger level. NM = location not monitored (restricted acess or not located)

E = Electrical pit

S= Stormwater drain

Sw = Sewer manhole L - Light pole

Runaway Bay SSC gas results, Ambient- Structures

25/09/2013

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 101 of 498

Attachment 3: Calibration Certificates and Specification Sheet for Landfill Gas Meters

RENTALS

This Gas Meter has been perform	mance check	ed / calibi	rated* as follow	ws:			
Gas Channel	Cal Value				Read	ing	Pass?
CH4 Check Only		0 % LEI	-	0	.0	% LEL	Ø,
		50 % LE	L	5	Ð.	% LEL	ď,
O2 Check Only	0.0 % vol			Ø	. 0	% vol	
	18.0 % vol			19	· 7	> % vol	
CO Check Only	100 ppm			0	19	ppm	
H2S Check Only	25.0 ppm			20	5.	D pprn	
Electrical Safety Tag attac	ched (AS/NZS	5 3760)	Tag No: 1			Valid to:	
Alkaline Batteries		Inline F	ilter Check	$\overline{\Omega}$	II	Cleaned	/
Low alarm set at 10% LE (5,000ppm)	L P	High alarm set at 50% LEL Z Pattery State		Battery Status:	6.1 v		
* Calibration gas traceability informa	tion is available	e upon rea	uest.	<u>Or</u>			wante at the
Date: 510	113		Checked by:_		F	stir	•
Signed:			$\Delta \Sigma$	<u>A</u>		/	

Equipment Report – Eagle Multi-Gas Monitor

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Returned	Item
\Box'_{\prime}		Eagle Multi Gas detector Ops check,
		Liquid Inhibiting Probe with In-Line Filter
Ľ,		Carry Strap
ď,		Spare Alkaline Batteries Qty
ø		Operating Manual
\mathbf{C}_{\prime}		Quick Guide
ď,		Carry Case
I		Battery Status 5. 2V
		Check to confirm electrical safety (tag must be valid)
		4

Processors Signature/ Initials

TFS Quote Reference		Condition on return
Customer Ref		
Equipment ID	EAGBB	
Equipment serial no.	E2A813	
Return Date & Time	<i>i</i> 1	

"We do more than give you great equipment ... We give you great solutions!"

Phone: (Free Call) 13	00 735 295 E	Invironmental Assessment Technolog	les	Fax: (Free Call) 1800 675 123
Melbourne Branch	Sydney Branch	Adelaide Branch	Brisbane Branch	Perth Branch
5 Canbbean Drive,	Level 1, 4 Talevera Roed,	27 Beulah Roed, Norwood,	Unit 2/5 Ross St	121 Beringers Ave
Scoresby 3179	North Ryde 2113	South Australie 5067	Newsland 4005	Malege WX 6060
Email: RentaisEnviroViC@thermofisher.com	Email: RentalsEnviroNSW@thermofisher.co	Emsit: RentalsEnviroSA@themofisher.com	Email: RentaisEm	Ernsit, RentaisEnviroWA@thermofisher.com

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 103 of 498

RENTALS

Equipment Report - GEOTECHNICAL INSTRUMENTS GA2000

This Gas Meter has been performance checked / calibrated* as follows:

Calibration	Cal Value	Reading	Cal Value	Reading	Pass?
CH4	60% vol	60%	0.00% vol	00%	Ø
CH4 -check only	2.5%CH4	2.5%			۲Ż/
H2s	25ppm	25 ppm	0 ppm	🥏 ppm	Ø,
02	20.9% vol	20.9%	0.00% vol	10.00%	
со	100ppm) co ppm	maga 0	ppm 🕑	Ø,
CO2	40% vol	40%			Ø
Operations Check					
Electrical Safety Tag attached (A	S/NZS 3760)	Tag No:			
Cleaned/checked	In line Filte	er Check	Ed Battery Status @1 2%		
* Calibration gas traceability information	is available upon	request.			
Date: 2018/13 Checked by: 5-15+11					

Signed:

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent		Item Sampling Probe with In-Line Filter 1m of Sampling Tube Carry Strap Battery Charger and AC/DC Power Supply Operating Quick Guide behind foam on lid of case." Manual behind foam on lid of case." Spare Inline Filters Qty (). Carry case Data Cable and Software CD or Diskette Instrument Battery Status @	
₫	Ō	Weil cap Quick connect litting	
		Check to confirm electrical safety (tag must be valid)	

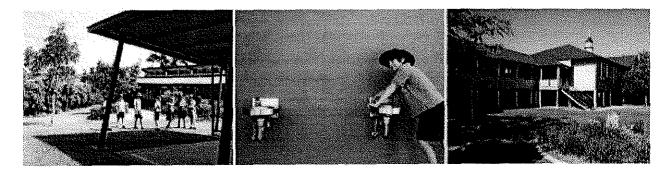
Processors Signature/ Initials

TFS Quote Reference			Condition on return
Customer Ref			
Equipment ID	GA2000BE		
Equipment serial no.	12665/10	-Britting - Concerning -	
Return Date	1	1	
Return Time			

"We do more than give you great equipment ... We give you great solutions!"

Phone: (Free Call) 1	300 735 295 Envi	ronmental Assessment Technolog	gies	Fax: (Free	Call) 1800 675 123
Melbourne Branch 5 Costobean Orive, Scoresby 3179 Emsit: RentalsEnviroVIC@thermofisher.com	Sydney Branch Level 1, 4 Talavers Roed, North Ryde 2113 Emeit: RentalaEnviroNSW@thermofisher.com	Adeleide Branch 27 Beutah Road, Norwood, Bouth Australia 5087 Email: RentalsEnviroSA@thermolisher.com	Brisbane Bra Unit 2/5 Ros Newsteed 40 Email: Renta	s St.	Perth Branch 121 Beringara Ave Melega WVA 6080 Email: RentalsEnviroWA@thermofisher.com
Issue 5		Oct 10			G0540

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 104 of 498



Attachment D

School Name: Runaway Bay Sport and Leadership Excellence Centre Maintenance Scope of Works For SMIP

(School Maintenance Investment Program)

Prepared by: Vivien Weston Approved by: David Morgan School Contact Name: Vivien Weston (e.g. School Principal or Business Services Manager)	Date: 9/12/2011 Date: 9/12/2011
Forward to Facilities.SMIP@deta.qld.gov.au	Date Forwarded / /2011
Approved By SMIP Project Team Contact Name:	Date: / / 2011

Maintenance Scope of Works template Version 203-11-11

QUOTATION FOR MAINTENANCE SCHOOL MAINTENANCE INVESTMENT PROGRAM (SMIP)

This document provides a detailed scope of works for maintenance projects identified for completion under the School Maintenance Investment Program.

The person charged with preparing this scope of works is to ensure the DET Design Requirements/Standards, QBuild Painting Specifications and QBuild Electrical Specifications are followed.

Tenderers are to price each item. Where the item is not applicable to your trade please indicate "N/A". It is a mandatory requirement that all Tenderers attend a site visit before submission of offer. Schools retain an attendance register for this purpose.

Tenderers are to allow for barricading, scaffolding, fencing and any other requirements necessary to meet Work Place Health and Sasety compliance required while undertaking the works.

Tenderers should refer to the "Working On Department of Education and Training (DET) Facilities" document to ensure they have made any allowances in pricing that may be required to conform to the conditions set out in this document.

Maintenance Scope of Works template Version 2 03-11-11

	Description Mechanical Ventilation	Value \$(GST Excl)
CADC TASK No. from MAR		
1000000 69214	Location Commercial Kitchen	
09214	 Description Supply and install a mechanical ventilation system to the Commercial Kitchen located on level 1 adjacent to the dining hall. Supply and install 3 single speed, three phase induction units, complete with canopy, internal ducting, single speed three phase discharge unit and canopy, security grilles and roof trimmers. Indoor air quality together with a constant temperature within one or two degrees from outside ambient is desired. Approximate cubic air volume is 1000 cubic metres. Quotes should also include All electrical costs associated with installing 3 phase power supply to the induction units including switches, cable, motor connections, plugs, waterproof isolation switches and fittings to allow proper connection of the motors to the power supply Any mobile scaffolding or equipment hire All cleanup and waste disposal costs "Make good" any surfaces disturbed in carrying out the works 	9
	EXCLUSIONS Please list any items specifically excluded in this quote	
C 4a4/		ф
statutory	/ notifications and levies	\$
	GST	\$
	TOTAL (Inclusive of GST)	\$
	TOTAL (Exclusive of GST)	\$ \$

,

	Description BUILDING STRUCTURE / ROOFING WORKS	Value \$(GST Excl)
CADC TASK No. from MAR	Location	
100000069 216	Roof Replacement – Sports Medicine Clinic	
	Description To take off existing roof sheets – approx. 320sqm and flashings to the roof area over the Sports Medicine Clinic. To supply and install continuous colorbond roof sheeting and colorbond flashings as required and the roof made good.	
	When replacing roof sheeting where bad corrosion exists, the existing exposed sandwich ceiling paneling is to be removed and repaired and or replaced Also the exposed structural steel work to be repaired, rust	
	treated, and also made good All necessary scaffolding, lifting of materials, WH&S measures and height precautions to be implemented for the purpose of high roofing works. Make good any surfaces disturbed in carrying out the works.	
	All works to be completed in a professional manner and to the satisfaction of management	
CADC TASK No.	Location Roof Replacement – Dining Hall/Workshop/Amenities	
from MAR 100000069 202	Description To take off existing roof sheets to all roof area to main building over dining hall and main kitchen, and to supply and install new continuous colorbond roof sheeting to this area and make good. Note: where installed, existing air conditioning units on the roof will have to be removed to allow for the new roofing installation and to be re-installed on completion of roof works, this will include electrical and air conditioning mechanics	
	When replacing roof sheeting at the northern where bad corrosion exists over mezzanine area & dining hall, the existing exposed sandwich ceiling paneling is to be removed and repaired and or replaced Also at this same location (northern end) the exposed structural steel work to be repaired, rust treated, and made	
	good All necessary scaffolding, lifting of materials, Workplace Health & Safety measures and height precautions to be erected and implemented for the purpose of high roofing works. Make good any surfaces disturbed in carrying out the works. All works to be completed in a professional manner and to	
	the satisfaction of management	

CADC TASK No.	Location	
from MAR 100000069	Sports Walk – Gutter & Flashings (Coffee Shop)	
307	Description	
	To remove all flashings along the entire length of box gutter	
	from gym wall to end at reception area To remove all box gutter along the entire length from gym	
	wall to end at reception	
	Install new stainless steel box gutter for the entire length	
	Install new stainless steel sumps to new box gutter at all down pipe dropper points	
	To install new colorbond flashings to the box gutter for	
	entire length. Approx. 36sqm All necessary scaffolding, safety barriers and lifting of	
	materials, WH&S measures and height precautions to be	\mathcal{O}
	erected and implemented for the purpose of high roofing	
	works. Make good any surfaces disturbed in carrying out the works.	17.
	All works to be completed in a professional manner and to	
	the satisfaction of Centre management.	
CADC	Location	
TASK No.		\wedge
from MAR 100000069	Sports Walk (EAST) – Covered Area (Steelwork)	
308	Description	
	To remove eaves gutter along the building length adjacent	
	to loading dock to end at reception area To expose structural steel work, to scrape back, treat and	
, ,	make good, to repair and to replace or repair all existing	
	gutter brackets to this gutter. All necessary scaffolding, safety barriers and lifting of	
	materials, WH&S measures and height precautions to be	
	erected and implemented for the purpose of high roofing	
	works. Make good any surfaces disturbed in carrying out the works.	
	All works to be completed in a professional manner and to	
	the satisfaction of Centre management.	
	EXCLUSIONS	
	Please list any items specifically excluded in this quote	
Statutory n	otifications and levies	\$
m	TOTAL (Exclusive of GST)	\$\$
	GST	Φ
	TOTAL (Inclusive of GST)	\$

Date:

	Description Replacement of flooring and floor covering	Value \$(GST Excl)
CADC TASK No. from MAR		<u></u>
1000006 9237	Location Lodge 1	······
	Description Replace Carpet in 8 lodge bedrooms and accommodation areas with commercial grade sheet vinyl. Replace carpet in 2 ensuited rooms with commercial grade carpet. Approximately 160sqm. Supply and install vinyl and carpet including any underlay and associated floor preparation costs.	
10000006 9246	Location Lodge 2.	9
	Description Replace Carpet in 8 lodge bedrooms and accommodation areas with commercial grade sheet vinyl. Replace carpet in 2 ensuited rooms with commercial grade carpet. Approximately 160sqm. Supply and install vinyl and carpet including any underlay and associated floor preparation costs	
10000006 9254	Location Lodge 3	\sim
	Description Replace Carpet in 8 lodge bedrooms and accommodation areas with commercial grade sheet vinyi. Replace carpet in 2 ensuited rooms with commercial grade carpet. Approximately 160sqm. Supply and install vinyi and carpet including any underlay and associated floor preparation costs	
10000006 9262	Location Lodge 4	
i	Description Replace Carpet in 8 lodge bedrooms and accommodation areas with commercial grade sheet vinyl. Replace carpet in 2 ensuited rooms with commercial grade carpet. Approximately 160sqm. Supply and install vinyl and carpet including any underlay and associated floor preparation costs	
10000006 9270	Location Lodge 5	Alexandron (1994) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1
	Description Replace Carpet in 8 lodge bedrooms and accommodation areas with commercial grade sheet vinyl. Replace carpet in 2 ensuited rooms with commercial grade carpet. Approximately 160sqm. Supply and install vinyl and carpet including any underlay and associated floor preparation costs	
1000006 9278	Location Lodge 6	
	Description Replace Carpet in 8 lodge bedrooms and accommodation areas with commercial grade sheet vinyl. Replace carpet in 2 ensuited rooms with commercial grade carpet. Approximately 160sqm. Supply and install vinyl and carpet including any underlay and associated floor preparation costs	

Note: Ensure that the scope of works includes the requirement to 'make good' any surfaces disturbed in carrying out the works (unless otherwise indicated).

10000006 9286	Location Lodge 7	
5200	Description Replace Carpet in all lodge bedrooms and	
	accommodation areas with commercial grade carpet. Approximately 160sqm. Supply and install carpet including	
10000006	any underlay and associated floor preparation costs	
9294	Location Lodge 8	
	Description Replace Carpet in all lodge bedrooms and accommodation areas with commercial grade carpet.	
	Approximately 160sqm. Supply and install carpet including any underlay and associated floor preparation costs	
10000006 9302	Location Lodge 9	3)
	Description Replace Carpet in 8 lodge bedrooms and accommodation areas with commercial grade sheet vinyl.	
	Replace carpet in 2 ensuited rooms with commercial grade carpet. Approximately 160sqm. Supply and install vinyl and carpet including any underlay and associated floor	L1 n
	preparation costs	
10000006 9217	Location Sports Medicine Centre	~
	Description Replace approximately 320sqm of cushioned	
	sheet vinyl and carpet throughout the Sports Medicine	
	Centre. Supply and install vinyl and carpet including any underlay and associated floor preparation costs	
	EXCLUSIONS Please list any items specifically excluded in this quote	
	The decision of the specification of the specificat	
Statutory no	otifications and levies	\$
	TOTAL (Exclusive of GST)	\$
	GST	\$
	TOTAL (Inclusive of GST)	\$

	Description Painting Related Defects	Value \$(GST Excl)
CADC TASK No. from MAR	GENERAL NOTE FOR TENDERS All completed work nominated under painted related items are to be painted in accordance with relevant paint manufacturers guidelines, Australian Standard and/or QBuild specification and unless specified is to match as close as practical to the existing colour scheme and level of gloss finish. Ensure sufficient clearance to doors and windows before painting commences.	, , , , , , , , , , , , , , , , , , ,
100000 069236	Location Lodge 1 Description: Pre-paint maintenance and full internal repaint to all previously painted surfaces including re-surface and seal of internal stairs and decking. Lodge consists of 10 bedrooms 2 with ensuites, 2 bathrooms and 2 disabled bathrooms to service lodge, common room/games/kitchen area, and laundry.	3
100000 069245	Location Lodge 2 Description Pre-paint maintenance and full internal repaint to all previously painted surfaces including re-surface and seal of internal stairs and decking. Lodge consists of 10 bedrooms 2 with ensuites, 2 bathrooms and 2 disabled bathrooms to service lodge, common room/games/kitchen area, and laundry.	
100000 069253	Location Lodge 3 Description Pre-paint maintenance and full internal repaint to all previously painted surfaces including re-surface and seal of internal stairs and decking. Lodge consists of 10 bedrooms 2 with ensuites, 2 bathrooms to service lodge, common room/games/kitchen area, and laundry.	
100000 069261	Location Lodge 4 Description Pre-paint maintenance and full internal repaint to all previously painted surfaces including re-surface and seal of internal stairs and decking. Lodge consists of 10 bedrooms 2 with ensuites, 2 bathrooms to service lodge, common room/games/kitchen area, and laundry.	
100000 069269	Location Lodge 5 Description of Pre-paint maintenance and full internal repaint to all previously painted surfaces including re-surface and seal of internal stairs and decking. Lodge consists of 10 bedrooms 2 with ensuites, 2 bathrooms to service lodge, common room/games/kitchen area, and laundry.	

escription of Pre-paint maintenance and full internal repaint all previously painted surfaces including re-surface and seal internal stairs and decking. Lodge consists of 10 bedrooms with ensuites, 2 bathrooms to service lodge, common oom/games/kitchen area, and laundry. ocation Lodge 7 escription of Pre-paint maintenance and full internal repaint all previously painted surfaces including re-surface and seal internal stairs and decking. Lodge consists of 10 bedrooms with ensuites, 2 bathrooms to service lodge, common om/games/kitchen area, and laundry. ocation Lodge 8 escription of Pre-paint maintenance and full internal repaint all previously painted surfaces including re-surface and seal internal stairs and decking. Lodge consists of 10 bedrooms with ensuites, 2 bathrooms to service lodge, common om/games/kitchen area, and laundry. ocation Lodge 8 escription of Pre-paint maintenance and full internal repaint all previously painted surfaces including re-surface and seal internal stairs and decking. Lodge consists of 10 bedrooms with ensuites, 2 bathrooms to service lodge, common om/games/kitchen area, and laundry. ocation Lodge 9 escription of Pre-paint maintenance and full internal repaint all previously painted surfaces including re-surface and seal internal stairs and decking and laundry.	
escription of Pre-paint maintenance and full internal repaint all previously painted surfaces including re-surface and seal internal stairs and decking. Lodge consists of 10 bedrooms with ensuites, 2 bathrooms to service lodge, common oom/games/kitchen area, and laundry. ocation Lodge 8 escription of Pre-paint maintenance and full internal repaint all previously painted surfaces including re-surface and seal internal stairs and decking. Lodge consists of 10 bedrooms with ensuites, 2 bathrooms to service lodge, common om/games/kitchen area, and laundry. ocation Lodge 9 escription of Pre-paint maintenance and full internal repaint all previously painted surfaces including re-surface and seal internal stairs and decking. Lodge consists of 10 bedrooms with ensuites, 2 bathrooms to service lodge, common om/games/kitchen area, and laundry.	
all previously painted surfaces including re-surface and seal internal stairs and decking. Lodge consists of 10 bedrooms with ensuites, 2 bathrooms to service lodge, common om/games/kitchen area, and laundry. ocation Lodge 8 escription of Pre-paint maintenance and full internal repaint all previously painted surfaces including re-surface and seal internal stairs and decking. Lodge consists of 10 bedrooms with ensuites, 2 bathrooms to service lodge, common om/games/kitchen area, and laundry. ocation Lodge 9 escription of Pre-paint maintenance and full internal repaint all previously painted surfaces including re-surface and seal internal stairs and decking.	
escription of Pre-paint maintenance and full internal repaint all previously painted surfaces including re-surface and seal internal stairs and decking. Lodge consists of 10 bedrooms with ensuites, 2 bathrooms to service lodge, common om/games/kitchen area, and laundry.	
all previously painted surfaces including re-surface and seal internal stairs and decking. Lodge consists of 10 bedrooms with ensuites, 2 bathrooms to service lodge, common om/games/kitchen area, and laundry. Decation Lodge 9 escription of Pre-paint maintenance and full internal repaint all previously painted surfaces including re-surface and seal	
escription of Pre-paint maintenance and full internal repaint all previously painted surfaces including re-surface and seal	
all previously painted surfaces including re-surface and seal	
internal stairs and decking. Lodge consists of 10 bedrooms with ensuites, 2 bathrooms to service lodge, common om/games/kitchen area, and laundry.	
ocation Lodge 1	
escription of Pre-paint maintenance and full external repaint all previously painted surfaces including varnished timber plumns (approximately 250sqm)	
ocation Lodge 2	
escription of Pre-paint maintenance and full external repaint all previously painted surfaces including varnished timber dumns (approximately 250sqm)	
ocation Lodge 3	
escription of Pre-paint maintenance and full external repaint all previously painted surfaces including varnished timber lumns (approximately 250sqm)	
ocation Lodge 4	
escription of Pre-paint maintenance and full external repaint	
	escription of Pre-paint maintenance and full external repaint all previously painted surfaces including varnished timber dumns (approximately 250sqm) ocation Lodge 3 escription of Pre-paint maintenance and full external repaint all previously painted surfaces including varnished timber lumns (approximately 250sqm) ocation Lodge 4

100000	Location Lodge 5	
069267	Description of Pre-paint maintenance and full external repaint to all previously painted surfaces including varnished timber columns (approximately 250sqm)	
100000 069275	Location Lodge 6	· · · · · · · · · · · · · · · · · · ·
000210	Description of Pre-paint maintenance and full external repaint to all previously painted surfaces including varnished timber columns (approximately 250sqm)	
100000	Location Lodge 7	8)
069283	Description of Pre-paint maintenance and full external repaint to all previously painted surfaces including varnished timber columns (approximately 250sqm)	LU.1
100000	Location Lodge 8	
069291	Description of Pre-paint maintenance and full external repaint to all previously painted surfaces including varnished timber columns (approximately 250sqm)	\sim
100000	Location Lodge 9	
069299	Description of Pre-paint maintenance and full external repaint to all previously painted surfaces including varnished timber columns (approximately 250sqm)	
	EXCLUSIONS Please list any items specifically excluded in this quote	
Statuton	v notifications and levies	\$
	TOTAL (Exclusive of GST)	\$
	GST	\$
	TOTAL (Inclusive of GST)	\$

Date:

069239	Electrical – Ceiling Fans Location Accommodation Lodge 1 Description To replace existing ceiling fans in each room of the wall mounted fans and make good the old wiring co To supply and fit the new wall mount fans to corr room. All electrical connections to be fitted b electricians. Make good any surfaces disturbed in a the works All works to be completed in a professional manne satisfaction of management. Location Accommodation Lodge 2 Description To replace existing ceiling fans in each room of the wall mounted fans and make good the old wiring co To supply and fit the new wall mount fans to corr room. All electrical connections to be fitted b electricians. Make good any surfaces disturbed in a the works All works to be completed in a professional manne satisfaction of management. All electrical connections to be fitted b electricians. Make good any surfaces disturbed in a the works All works to be completed in a professional manne satisfaction of management.	e lodge with onnections. and to the e lodge with onnections. ner of each by licensed carrying out
069239 1 1 1 1 100000 069248 1 1 100000 1 1 1 1 1 1 1 1 1 1 1 1 1	Description To replace existing ceiling fans in each room of the wall mounted fans and make good the old wiring co To supply and fit the new wall mount fans to com room. All electrical connections to be fitted be electricians. Make good any surfaces disturbed in a the works All works to be completed in a professional manne satisfaction of management. Location Accommodation Lodge 2 Description To replace existing ceiling fans in each room of the wall mounted fans and make good the old wiring co To supply and fit the new wall mount fans to com room. All electrical connections to be fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians. Make good any surfaces disturbed in a fitted be electricians.	e lodge with onnections. and to the e lodge with onnections. ner of each by licensed carrying out
	To replace existing ceiling fans in each room of the wall mounted fans and make good the old wiring co To supply and fit the new wall mount fans to com room. All electrical connections to be fitted to electricians. Make good any surfaces disturbed in a the works All works to be completed in a professional manne satisfaction of management. Location Accommodation Lodge 2 Description To replace existing ceiling fans in each room of the wall mounted fans and make good the old wiring co To supply and fit the new wall mount fans to com room. All electrical connections to be fitted to electricians. Make good any surfaces disturbed in a the works and make good the old wiring co To supply and fit the new wall mount fans to com room. All electrical connections to be fitted to electricians. Make good any surfaces disturbed in a fitted to electricians. Make good any surfaces disturbed in a the works All works to be completed in a professional manne	e lodge with onnections. and to the e lodge with onnections. ner of each by licensed carrying out
s 100000 069248 I v v r e t t J 100000	satisfaction of management. Location Accommodation Lodge 2 Description To replace existing ceiling fans in each room of the wall mounted fans and make good the old wiring co To supply and fit the new wall mount fans to com room. All electrical connections to be fitted be electricians. Make good any surfaces disturbed in othe works All works to be completed in a professional manne	e lodge with onnections. ner of each by licensed carrying out
069248 I v v r e t t A s 100000	Description To replace existing ceiling fans in each room of the wall mounted fans and make good the old wiring co To supply and fit the new wall mount fans to com room. All electrical connections to be fitted be electricians. Make good any surfaces disturbed in o the works All works to be completed in a professional manne	nnections. ner of each by licensed carrying out
r e t 100000	To replace existing ceiling fans in each room of the wall mounted fans and make good the old wiring co To supply and fit the new wall mount fans to con room. All electrical connections to be fitted b electricians. Make good any surfaces disturbed in o the works All works to be completed in a professional manne	nnections. ner of each by licensed carrying out
100000		r and to the
	Description	
v T r e t <i>t</i>	To replace existing ceiling fans in each room of the wall mounted fans and make good the old wiring co To supply and fit the new wall mount fans to corr room. All electrical connections to be fitted b electricians. Make good any surfaces disturbed in o the works All works to be completed in a professional mannel satisfaction of management.	nnections. ner of each by licensed carrying out
100000 L 069264	Location Accommodation Lodge 4	
ך ע ד ר נו ג	Description To replace existing ceiling fans in each room of the wall mounted fans and make good the old wiring co To supply and fit the new wall mount fans to corr room. All electrical connections to be fitted b electricians. Make good any surfaces disturbed in o the works All works to be completed in a professional mannel satisfaction of management.	nnections. her of each by licensed carrying out

	Location Accommodation Lodge 5	
100000 069272	Description To replace existing ceiling fans in each room of the lodge with wall mounted fans and make good the old wiring connections. To supply and fit the new wall mount fans to corner of each room. All electrical connections to be fitted by licensed electricians. Make good any surfaces disturbed in carrying out	
	the works All works to be completed in a professional manner and to the satisfaction of management.	
100000 069280	Location Accommodation Lodge 6 Description	
	To replace existing ceiling fans in each room of the lodge with wall mounted fans and make good the old wiring connections. To supply and fit the new wall mount fans to corner of each room. All electrical connections to be fitted by licensed electricians. Make good any surfaces disturbed in carrying out the works All works to be completed in a professional manner and to the satisfaction of management.	B
100000	Location Accommodation Lodge 7	
069288	Description To replace existing ceiling fans in each room of the lodge with wall mounted fans and make good the cld wiring connections. To supply and fit the new wall mount fans to corrier of each room. All electrical connections to be fitted by licensed electricians. Make good any surfaces disturbed in carrying out the works All works to be completed in a professional manner and to the satisfaction of management. Location Accommodation Lodge 8	
100000 069296	Description To replace existing ceiling fans in each room of the lodge with wall mounted fans and make good the old wiring connections. To supply and fit the new wall mount fans to corner of each room. All electrical connections to be fitted by licensed electricians. Make good any surfaces disturbed in carrying out the works All works to be completed in a professional manner and to the satisfaction of management.	
100000 069304	Location Accommodation Lodge 9 Description To replace existing ceiling fans in each room of the lodge with wall mounted fans and make good the old wiring connections. To supply and fit the new wall mount fans to corner of each room. All electrical connections to be fitted by licensed electricians. Make good any surfaces disturbed in carrying out the works All works to be completed in a professional manner and to the satisfaction of management.	

EXCLUSIONS Please list any items specifically excluded in this qu	uote
Statutory notifications and levies	\$
TOTAL (Exclusive of GST)	\$
GST	\$
TOTAL (Inclusive of GST)	\$

Date:

Signed: Page 3 of 3

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 117 of 498

	Description Repairs to Lighting – Beach Volleyball Courts	Value \$(GST Excl)
CADC TASK No.		
TBA	Location Beach Volleyball Courts Adjacent to lodges	<u>}</u>
	Description Electrical repairs to Beach Volleyball Court lighting including supply, installation and testing of lighting lamps and control gears inside poles. Including Boom lift hire/crane hire and transport. Make good any surfaces disturbed in carrying out the works	
	EXCLUSIONS Please list any items specifically excluded in this quote	
Statutor	y notifications and levies	\$
	TOTAL (Exclusive of GST)	\$
		\$
	GST	

Date:

Signed: Page 1 of 1

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 118 of 498

	Description Furniture & Fittings	Value \$(GST Excl)
CADC TASK No. from MAR		,,,,,,,,,
100000 069218	Location Sports Medicine – Vanity Unit	
	Description Remove and replace old water damaged vanity unit in toilet vanity area. Remove existing unit, disconnect all tap ware, remove ceramic basin and associated plumbing, and replace any damaged fittings. Supply and Install new vanity and all associated tap ware and plumbing. All works to be completed in a professional manner and to the satisfaction of management. Make good any surfaces disturbed in carrying out the works	8
	EXCLUSIONS Please list any items specifically excluded in this quote	
Statutory	y notifications and levies	\$
	TOTAL (Exclusive of GST)	\$
	GST	\$
	TOTAL (Inclusive of GST)	\$

Date:

Signed: Page 1 of 1

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 119 of 498

	Description Hydraulic services replace Chlorine Line	Value \$(GST Excl)
CADC TASK No.	Location: 20m Pool - Chlorine Feed Line (from main tank)	
from MAR 1000000 69170	Description To replace failed 25mm UPVC chlorine distribution line from 50m pool plant room storage tank to 20m pool plant room OR To install bunded holding tank and chlorine decanting point at 25m plant room Make good any surfaces disturbed in carrying out the works All works to be completed in a professional manner and to the satisfaction of management.	3
	EXCLUSIONS Please list any items specifically excluded in this quote	
Statutor	v notifications and levies	\$
	TOTAL (Exclusive of GST)	\$
	GST	\$

Date:

Signed: Page 1 of 1

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 120 of 498

	Description Internal Building repairs	Value \$(GST Excl)
CADC TASK No. from MAR		
100000 069207	Location Sports Walk- Mens & Ladies Change rooms Description To replace and upgrade toilet and shower partitions in change rooms – 5 toilets and 5 shower cubicles (Female) 3 Toilets and 5 shower cubicles (Mens) All works to be carried out in a manner as to have least interference with and as little disruption as possible to members and guests. Make good any surfaces disturbed in carrying out the works.	3
100000 069197	All works to be completed in a professional manner and to the satisfaction of management Location Coffee Shop amenities – Male toilets	
	Description To repair approx. 2sqm of gyprock ceiling in male toilet area adjacent to the urinals. Make good any surfaces disturbed in carrying out the works. All works to be completed in a professional manner and to the satisfaction of management	
	EXCLUSIONS Please list any items specifically excluded in this quote	
Statutory	y notifications and levies	\$
	TOTAL (Exclusive of GST)	\$
	GST	\$
	TOTAL (Inclusive of GST)	\$

Date:

Signed: Page 1 of 1

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 121 of 498

	Description External finishes/ building/pathways	Value \$(GST Excl)
CADC TASK No.		
100000 069314	Location Accommodation Lodges – Shade Sails	
	Description To supply and install 2 replacement shade covers to lodges outdoor areas to common deck link ways. Approx. 72sqm. All necessary scaffolding, lifting of materials, WH&S measures and height precautions to be implemented for the purpose of high roofing works. Make good any surfaces disturbed in carrying out the works. All works to be completed in a professional manner and to the satisfaction of management	Ø
100000 069310	Location Accommodation Lodges – Rolling Step Treads	Î.n.~
009510	Description To roll all step treads and round edges to all lodge stairways. To treat and seal all timber stair treads, approx. 160 treads. Make good any surfaces disturbed in carrying out the works. All works to be completed in a professional manner and to the satisfaction of management	
100000 069311	Location Accommodation Lodges - Timber Decking resealing	
	Description To pressure clean all timber decking landings and step treads to all lodges. To treat and seal all timber decking and stair treads. Make good any surfaces disturbed in carrying out the works. All works to be completed in a professional manner and to the satisfaction of management	
100000	Location Walkway from Car park to Lodges	
69183	Description To replace timber walkway – approx 100sqm of treated pine timber boardwalk leading from the East Car park to the lodges. Make good any surfaces disturbed in carrying out the works. All works to be completed in a professional manner and to the satisfaction of management	
	EXCLUSIONS Please list any items specifically excluded in this quote	
Statutorv	notifications and levies	\$
	TOTAL (Exclusive of GST)	\$
	GST	\$
	TOTAL (Inclusive of GST)	\$

Date:

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 122 of 498

	Description Fire Protection System	Value \$(GST Excl)
CADC TASK No.		
100000 069178	Location Centre wide installation of Emergency/Fire protection system	
	Description Full audit and upgrade of all buildings to incorporate a fully addressable emergency and fire system. This will include survey of accommodation areas alarm system, egress plans	
		<u>(</u>
	EXCLUSIONS Please list any items specifically excluded in this quote	
Statutor	y notifications and levies	\$
	TOTAL (Exclusive of GST)	\$
	GST	\$
	TOTAL (Inclusive of GST)	\$

Date:

Signed: Page 1 of 1

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 123 of 498

t call without 2012 for ice 2 February 201

David Morgan Sport Super Centre Cnr Sports Drive and Morala Avenue RUNAWAY BAY QLD 4216

Dear David,

Landfill Gas Monitoring December 2010 Report

As requested, GHD attended the Sports Super Centre site on the 16 December 2010 to undertake landfill gas monitoring. Following the recommendations from the previous monitoring round, a selection of locations (as listed below), were monitored during this round. Table 1 attached, provides details on general observations made on the day and Table 3 outlines the results for the selected structures monitoring locations.

Locations monitored December 2010

E10, E12, E21, E24 Left, E24 Right, E25, E26, West Car Park NE Corner, West Car Park NE Corner, West Car Park Right NW Corner, West Car Park NW Corner, Storeroom 1 and Storeroom 2.

All locations were compliant with the relevant adopted trigger level (12,500 ppm methane) during this round of monitoring; however detectable levels of methane were recorded at the following locations.

Location E26 (and electrical pit located at the southern boundary to the west car park) returned results of 1000 ppm methane for the second consecutive monitoring round. Although this methane level is below the relevant adopted trigger level of 12,500 ppm methane, it represents an increase in concentration at this location since the December 2009 monitoring round.

Location E25 (an electrical pit) located in the northern end of the west car park, returned a result of 1000 ppm methane. This is an increase in methane concentration when compared to the previous June 2010 round of menitoring (500 ppm).

Location E10 (an electrical pit located on the north-eastern side of the running track) returned a result of 500 ppm methane this round which is the first instance of a detectable level of methane recorded when compared to the historical dataset for this location. Due to this detection, additional electrical pits on the northern and southern edges of the running track (towards the scoreboard end) were also monitored. Methane levels of 5000 ppm and 2000 ppm were detected at these respective additional locations. These locations were not previously included in the monitoring program, however are recommended to be included in future visits (and have been assigned as monitoring locations E9A and E10A for the northern and southern pits respectively).

GHD Pty Ltd AEM 39 (2014)55 373 221 Character Street programmed #11 Print 190 maximility printing 21142 of Washarm T 61 2 3318 3060 F 61 2 3516 3335 E pharmaline provincy. W deterministic of a

41/20337/415677 our ref:

Our ref:

Methane was not able to be detected within Storerooms 1 and 2 during this monitoring round. As these locations recorded results of 1000 ppm methane and 500 ppm methane respectively in June 2010, any trends in methane levels at these locations will continue to be assessed in future monitoring events.

Based upon this information, it is recommended that:

- Biannual monitoring (as a minimum) be scheduled at the selected locations detailed above to continue assessing trends in gas conditions for the site. A full assessment (monitoring of all site locations) is recommended on an annual basis (with the next monitoring round to be undertaken in June 2010).
- Additional monitoring locations E9A and E10A (electrical pits on the northern and southern edges of the running track towards the scoreboard end) be included in future partial and full gas assessments at the site.
- Storerooms 1 and 2 continue to be regularly opened to allow any potential methane build up to dissipate.

If you have any questions or require any further details, please don't hesitate to contact Adam Major or myself.

betinda. Oberia@ GHD. Com Udate Pian eg. Ground water testing.

Yours sincerely,

Bellu

Belinda Oberia Environmental Scientist (07) 3316 3954

41/20337/415677

Runaway Bay Former Landfill: Spots Super Centre - Landfill Gas Management Strategy

TABLE 1: General Weather Conditions and Site Observations

1

Date	Atmosph	eric Pressure	Wind Speed	Direction	Temp.	Weat	her Conditions	Raintati Over Preceding Week	Comments	Initials
13510	(hPa)	Rising/Falling	(Annih)	(degrees)	1"01	Current	Preceding Week	(mmi)	Contractors	a series s
25-Jun-08	1023.1	Falling	17	315	16.3	Fine conditions, cool a.m. warming and dry with ligh breaze.	Predominantly fine conditiona with only light showers.	20	Monitoring locations clearly visible with genrally good access. Some pits/dreins not as per map, some on site not shown etc. Gea equipment measures CH4 >500ppm only	тк
26-Sep-08	1020.2	Falling	20	o	23.9	Ught early showers, then fine, Light S to SE winds	Predominately fine conditions	1.4	Site acess good, map locations approximate only. Gas equipment measures CH4 >500ppm only. Gas like odour in south west carpark.	во
15-Dec-08	1005.2	Rising	22	270	26.8	Fine and sunny with light breeze.	Some showers,	20.6	Site access good, map locations approximate only. Gas equipment measures CH4 >500ppm only. Some water observed in electrical pits in west carpark.	BO
26-Mar-09	1021,7	Failing	22	155	26.7	Fine and sunny with light breeze.	Predominantly fine conditions with light showers,	6.8	Partial zasessment only (9 locations). Recent addition of vent at NE corner of west carpark. Gas equipment measures CH4 >500ppm only.	80
5-Jun-09	1015.3	Falling	7	292.5	24,4	Overcast with showers. Slight WNW breeze	Some showers.	19.5	Site acess good, map locations approximate only. Gas equipment mercurus CH4 >500ppm crist Social water observed in electrical pits in visual corparit.	во
25-Sep-09	1017.3	Falling	7	90	23.5	Overcast with showers. Slight WNW breaze	Predominantly fine and sumny	0/5	Patital assessment only (10 Acations), Good all a acess, yet a containg rifectively, Ges equipment measures (244 >200ppm only.	80
19-Dec-09	1015,5	Fating	17	22.5	26,1	Cloudy and overcast. 7/8 cloud cover, Light breeze. Storms predicted	Mostly fire with ight showers	32	Partial assessment only (10 locations). Gred data acess, vents opticating effectively. Gas aquipment measures CH4 >500 ppm only.	BO
4-Jun-10	1012.6	Failing	17	315	16,5	Fine and summy with light breets,	Sone showers.	140.22	Full site assessment. Good site access, verts or relating effectively. Gas squipment measures CH4 >500ppm only.	BO
16-Dec-10	1007,7	Falling	20	315	28	C) sudy and overcast. 7/8 clours cover, Intermittent Seaze. Storms predicted	Some showers plus 45.8mm rainfail in one day (4 days prior to monitoring)	47,6	Partial assessment, Good site acress, verbs operating effectively, Gas equipment measures CH4 >500ppm only.	BO

Notes

Atmospheric pressure, wind speed/ direction, emperature at daily rai fail data to be obtained from the Bureau of Meteorology, Gold Coast Seaway Station (No 40764.)

Runaway Bay SSC gas results.xis, General Info

A SHE	Parameter	Unita	Bampling Cate										
Location	Parameter	Onna	25-Jun 68	28-540-08	15-Dec-08	26.Mar-09	5.Jun (9	25-5+p-09	18-Dec-09	4.3.0-10	15-Dec-11		
	Boundary Wells												
WV1	CH.	W (MV)	0	0	0	NM	0	NM	NM	0	NM		
	H ₂ s	ppm	0	0	0	104	0	Pana .	NM	0	NOM.		
	0,	14 (WA)	20.9	20.9	20.0	PAA.	20.9	2004	ra.A	20.9	Ner		
WW2	CH.	\$ (W)	0	0	0	364	0	104	NDA	0	104		
	H ₂ S	ppm	0	0	0	1M	0	1,84	124	0	NON		
	0,	15 DW	10.4	20.9	19	NM.	20.1	104	NM	20.2	tax.		
WW3	CH,	\$ 0.00	0	1000	NM	NM	NM	1M	101	1984	NOM		
	Hzti	ppm.	0	ANA .	NBM	NM	NM	NM	NM	644	185		
	02	16 (1474)	18.2	144	184	200	NM4	NM	PRM -	104	NM-		
WW4	CH.	\$ (10)	0	0	0	NOM.	soli fas	FAM	NM	c	NDA .		
	ња	ppm	0	0	0	NM	0	NM	NM	0	NM		
	0,	16 0000	20.1	20.9	20 5	NM	20.5	104	MSN	20.5	NA		

TABLE 2: Boundary Soil Atmosphere Gas Monitoring Wells

1

Methane Trigger Level = 1 25 % v/v (Environ ntal Guidelines: Solid Waste Landfilts, NSW EPA, 1995)

Shading Indicates anomedance of trigger le Bold indicates detection of methane NM = Parameter not monifored this round

Runaway Bay 55C gas results.xda, Soil Ges Wells

TABLE 3: Sub -Surface Structure Emissions

	Parameter	Units	28-Jun-08	26-Sep-08	15-Dec-68	28-Mar-09	5-Jun-09	25-Sep-09	19-Dec-09	4-Jun-10	16-Dec-10	Maximum CH, Reading
1	СН4	ppm	≪ 500	≪ 500	≪ 500		≤ 500			≪ 500		0
	H ₂ S	ppm	0	0	0		0			0		0
	02	% (v/v)	20.9	20.9	20.9		20.9			20.9		20.9
2	CH4	ppm	< 500	< 500	≮ 500		€ 500			≪ 500		0
	H ₂ S	ppm	0	0	0		0			0		0
	02	% (v/v)	20.9	20.9	20.9		20.9			20 9		20.9
E3	CH4	ppm	≪ 500	< 500	≪ 500		≪ 500			≤ 500	L	0
	H ₂ S	ppm	0	0	0		0			0		0
	02	% (v/v)	20.9	20 9	20.9		20 9			20.9		20.9
E4	CH4	ppm	< 500	< 500	≮ 500		≤ 500		· · · · · · · · · · · · · · · · · · ·	< 500		0
	H ₂ S	ppm	0	0	0		0			0		0
	0 ₂	% (v/v)	20.9	20.9	20.9		20.9			20.9		20.9
66	СН	ppm	< 500	< 500	≪ 500		< 500			< 500		0
	H ₂ S	ppm	0	0	0		0			0		0
	02	% (v/v)	20.9	20.9	20.9		20.9			20.9		20.9
E6	CH4	ppm	< 500	< 500	< 500		< 500			< 500		0
	H ₂ S	ppm	0	0	0		0			0		0
	02	% (V/V)	20.9	20.9	20.9		20.9			20.9		20.9
7	CH,	ppm	<500	<500	<500		<500			<500		0
	H ₂ S		0	0	0		0			J J	7.	0
	0 ₂	ppm % (v/v)	20.9	20.9	20.9		20.9			2).9	64 <u>—</u> —	20.9
-											+	
28	CH4	ppm	<500	<500	<500		<500			<56.0		0
	H ₂ S	ppm N (ch)	0	0	0		0		<u>^</u>	0		0
	O ₂	% (v/v)	20.9	20.9	20.9		20.9			20.9		20,9
9	CH4	ppm	<500	<500	<500		<500			<500		0
	H ₂ S	pom	0	0	0		0		<u> </u>	0		0
	0,	% (v/v)	20.9	20.9	20.9		20.9			20.9		20.9
ESA	CH4	pom									2000	2000
	H ₂ S	ppm									0	0
	02	% (v/v)									19.6	20.9
E10	CH4	ppm	<500	<500	<500	<500	<500	< 500	€ 500	<500	560	500
	H ₂ S	ppm	0	0	0	0	0	0	0	0	0	0
	0 ₂	16 (v/v)	20.9	20.9	20.9	20.9	20.9	20.9	20.9	26.9	20.0	20.9
10A	CHA	ppm						1-07	77	77	5000	5000
	H ₂ S	ppm						1			3	0
	02	16 (v/v)								77	17.8	20.9
11	CH4	ppm	<500	<500	<500		<500			<300		0
	H ₂ S	ppm	0	0	0		0			C Z	t z – –	0
1	02	% (v/v)	20.9	20.9	20.9		20.9			20.9	Y	20.9
10	CH4			<500	<500	500		× 500	< 50°)	1000	< 500	1000
12		ppm	1000				1000		< 5%			
	H ₂ S	ppm	0	0	0	0	0	0	0	0	0	0
)	0 ₂	% (v/v)	20,7	20.9	20,5	20.9	20.9	20.9	20.9	20.9	20.6	20.9
13	CHA	ppm	< 500	<500	<500		<500	<u> </u>		<500		0
8	H ₇ S	ppm	0	0	0		0	V		0		0
		% (v/v)	20.9	20.9	20.6	(20.9			20.9		20.9
514	CH4	opm	< 500	<500	<500	5	<500			<500		0
	H ₇ S	ppm	0	0	0		0			0		0
1	O2	% (v/v)	20.9	20.9	20.9		20.9			20.9		20.9
14	CHA	ppm	< 500	<500	<500		<500			<500		0
outh Left	H ₂ S	ppm	0	0	0		0			0		0
)	02	% (v/v)	20.9	20.9	20.9		20.9			20.9		20.9
14	сн,	opm	< 500	<500	<500		<500			<500		0
	H ₂ S	ppm	0	0	0		0	\sim		0		0
	02	% (v/v)	20.9	20.9	20.9	2/1	20.9	1 1 51		20.9		20.9
	CH4	ppm	< 500	<500	<500		<500			<500	1	0
2000 B	H ₂ S	ppm	0	0	0		0			0		0
	H25 02	ppm % (v/v)	20.9	20.9	20.3		20.9	05		20.9		20.9
16	<u></u>						<500			<500		0
	CH4	ppm	≪ 500	<500		ļ		h		11		
	H ₂ S	ppm	0	0	5		0			0		0
	02	% (v/v)	20.9	20.9	20.3		20.9	1		20.9		20.9
	CHA	ppm	<500	<500	<500		*500			<500		0
	H ₂ S	ppm	0	0 🗸	<u>()</u>)	- 1 -	2			0		0
	02	% (v/v)	20.9	25.9	10.9		20.5			20.9		20.9
16 North	сн.	opm	<500	<	<500		×500			<500		0
	H ₂ S O ₂	ppm	0	0	0		0			0		0
		% (WN)	20.9	20.2	20.9		20.9			20.9		20.9
	CH.	ppm		4200	<500		×500			<500		0
	H ₂ S	ppm	0	2	0		0	-		0		0
		% (WV)	20.9	20.9	2/19		20.9			20.9		20.9
		ppm			<500		<500 0			<500		0
	H ₂ S O ₂	opm 5 only	20.1	20.9	20.9		20.9			20.9		20.9
	CH.	96 (WV)	- 500	<500	<500	<u> </u>	<500			<500		0
		ppm /	0	0	0	<u> </u>	<500 0			0		0
	01	% (wV)	20.9	20.9	10.9		20.9			20.9		20.9
			< 500	<50%	<500		<500			<500		0
		opm opm	0	0			0		-	0		0
	0 ₂	No (v/v)	20.3	20.9	20.9		20.9	-	-	20.9		20.9
1		ppm	< 500	<500	<5r.3		<500			<500	1	0
	CH.											
20	CH4				0	1	0			0		0
20	CH4 H4S O2	ppm	0	0	0 20.9		20.9			0 20.9		0 20.9
20 #R	H,S 02				0 20.9 <500		0 20.9 <500			0 20.9 <500		0 20.9 0

H ELECTRICAL FITS STM EAST SIDE F RUNNLING TRACK (NEW) LOCALTIONES

Runaway Bay SSC gas results xls, Ambient- Structures

TABLE 3: Sub -Surface Structure Emissions

Location	Parameter	Unite	28-Jun-08	26-Sep-08	15-Dec-08	26-Mar-09	5-Jun-09	25-Sep-09	19-Dec-09	4-Jun-10	18-Dec-10	Reading
E21	CH.	ppm	× 500	<500	<500	20-Mar-03	500	< 500	< 500	4500 ×500	< 500	500
	H ₂ S	ppm	0	0	0	-	0	0	0	0	0	0
	0,	% (vh)	20.9	20.9	20.9		20.9	20.9	20.9	20.9	20.3	20,9
21	CH.	ppm	< 500	<500	<500		<500			<500		0
eft	His	ppm	0	0	0	1	0			0		0
	0,	% (v/v)	20.9	20.9	20.9		20,9			20,9		20,9
21	CH4	ppm	< 500	<500	<500		<500			<500		0
Right	H ₂ S	ppm	0	0	0		0			0		0
22	O2 CH,	% (WV)	20.9 <500	20.9 <500	20.9 <500		20.9			20.9		20.9
522	H ₂ S	ppm ppm	0	0	0		0			0	-	0
	07	% (v/v)	20.9	20.9	20.9	1	20.9	-		20.9		20.9
E22	CH4	ppm	<500	<500	<500		<500			<500		0
Left	HIS	mag	0	0	0		0			0		0
	02	% (v/v)	20.9	20.9	20.9		20.9			20.9		20.9
22	CH4	ppm	<500	<500	<500		<500			<500		0
Right	H ₂ S	ppm	0	0	0		0			0		0
	0 ₂	% (v/v)	20.9	20.9	20.9		20.9			20.9		20.9
23	CH4	ppm	<500	<500	<500		<\$00			<500		0
	H ₂ S	ppm	0	0	0		0			0		0
202	O2 CH4	% (viv)	20.9 <500	20.9 <500	20.9		20.9			20.9	2	20.9
23 .eft	H ₁ S	ppm mqq	<500	<500	<500		<500			e',00		0
.011	01	W (viv)	20.9	20.9	20.9		20.9			20.9	b-/	20.9
23	CH.	ppm	< 500	<500	<500		<500			0020		0
ight	HAS	ppm	0	0	0		0		~~~~	0		0
	O ₂	The (velve)	20.9	20.9	20.9		20.9			205		20.9
24	CH.	ppm	≪ 500	<500	<500		<500			<500		0
	H ₂ S	ppm	0	0	0		0			0		0
	O ₁	76 (volv)	20.9	20.9	20.9		20.9		2.5	17.1		20.9
24	CH4	ppm	≪ 500	<500	500	<500	500	< 500	< 500	<500	> 500	500
eft	H ₂ S	opm	0	0	0	0	0	0	0	0	0	0
	01	% (v/v)	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	7.0.9	20.9
24	CH.	ppm	< 600	<500	<500	<500	<500	< 500	< 500	<\$00	< 5'.0	0
ight	HAS	opm	0	0	0	0	0	0	0	0	0	0
	07	1% (W/V)	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.4	20.9	20.9
25	CH4	ppm	< 500	<500	1000	500 0	1000	< 503	0	<u>,000</u>	500 0	1000
	H ₂ S 01	ppm % (w/v)	20.9	20.9	0 20.9	20.9	20.7	20.5	20.9	20.1	23.9	20.9
26	CH4	ppm	× 500	<500	<500	<500	<500	*503	500	1000	1000	1000
20	H ₂ S	ppm .	0	0	0	0	0		0	0	0	0
	07	16 (vity)	20.9	20.9	20.9	20.9	20.9	20.9	20.9	19 1	20.9	20.9
27	CH4	ppm	<500	<00	<500		<500			1500		0
	HIS	mqq	0	0	0		0			0		0
	07	14 (mh)	20.9	20,9	20.9		20 5	1	- /	20.0		20.9
28	CH4	opm	<500	<\$00	<500	-	<52)		-//	<500		0
	H,S	ppm	0	0	0		0			0		0
	07	% (v/v)	20.9	20,9	20.9		20.9			20.9		20.9
29	CH4	ppm	<500	<500	<500		<502	1		<500		0
	H ₂ S	ppm	0	0	0		2			0		0
	0,	% (v/v)	20.9	20.9	20.6		20.6		<u> </u>	20.6		20.9
30	CH.	ppm	<500	<500	<500		4560			<500		0
	H35 O2	ppm % (v/v)	20.9	20.9	20.9		20.9			0 20.9		0 20.9
34		_	<500	<500	<500			-		<500		
31	CH4 H3S	ppm ppm	<500	<500	<500		<500 0			<500 0		0
	0,	ppm % (v/v)	20.9	20.9	20.3		20.3		$\rightarrow \rightarrow$	20.3		20.9
/est Car park	CH.	ppm	<500	0	3500	21045	1500	* 500	< 500	500	< 500	21000
E Comer	H ₂ S	ppm	0	0	0	2	0		0	0	0	0
	02	1% (W/V)	20.9	20.9	20.9	7/501	20.9	20.9	20.9	20.4	20.9	20.9
/est Car park	CH.	ppm	<500	<500	<500	7	<500			<500	<500	0
aft NE Comer	H ₂ S	ppm	0	0	0		0 7			0	0	0
	Q2	% (v/v)	20.9	20.9	20.5		20.9			20.9	20.9	20.9
feet Car park	CH4	ppm	4000	<500	50%	1000	-000	\$ 500	1000	<500	<500	4000
ght NW Comer	His	ppm	0	0	0	0		0	0	0	0	0
	07	% (v/v)	15.6	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20 9	20.9
est Car park	сн.	ppm	<500	<500	0	<500	0%0	≪ 500	< 500	<500	< 500	0
N Comer	H ₂ S	ppm	0	0	U	C	0	0	0	0	0	0
	Q2	% (v/v)	20.9	20.9	27.9	(0.9	20.9	20.9	20.9	20.9	20.9	20.9
est Car park	CH4	ppm	<500	<500	0		<500			<500		0
W Edge	H ₂ S	mqq	0	0	0		0			0		0
- Lalling P	02	% (v/v)	20,9	120.9	20.4		20.4			20,4		20.9
antral Light Pole	CH,	mqq	<500	<500	<500		<500 0			<500 0		0
	H2S 01	ppm % (v/v)	20.9	20.9	20.9		20.9			20.9		20.9
	-1	~ 10.4)	20.9	100	20.8		20.9			10.0		64.0
coreboard light	CH4	ppm	<500	-500	< 500		<500			<500		0
			0 7	0	0		0			0		0
	H25	ppm	N 1	/ Y								
coreboard light ole	H ₂ 5 O ₂	96 (v/v)	20.9	20.9	20.6		20.9			20.9		20.9
ola	H ₂ 5 O ₂	% (v/v)	20.9	20.9								1
	H ₂ 5 O ₂				NM NM		20.9 NM NM			20.9 NM NM		20.9 0

Runaway Bay SSC gas results xis, Ambient- Structures

TABLE 3: Sub -Surface Structure Emissions

Location	Parameter	Unite	28-Jun-08	28-Sep-08	15-Dec-08	29-Mar-09	5-Jun-09	25-Sep-09	19-Dec-09	4-Jun-10	16-Dec-10	Maximum CH Reading
51	CH4	ppm	< 500	<500	<500		<500			<500		0
	H ₂ S	ppm	0	0	0		0			0		0
	0 ₂	% (v/v)	20.9	20.9	20.9		20.9			20.9		20.9
32	CH4	ppm	< 500	<\$00	<500		<500			<500		0
	HIS	ppm	0	0	0		0			0		0
	02	96 (v/v)	20.9	20.9	20.9		20.9			20.9		20.9
3	CH.	ppm	< 500	<500	<500		<500	-		<500		0
	HIS	ppm	0	0	0		0			0		0
	02	% (v/v)	20.9	20.9	20.9		20.9			20.9		20.9
54	CH4	ppm	< 500	<500	<500	-	<500			<500		0
	HIS	ppm	0	0	0		0			0		0
	02	% (viv)	20.9	20.9	20.9		20.9			20.9	-	20.9
5	CH4	ppm	< 500	<500	<500		<500			<500		0
	H ₂ S	ppm	0	0	0		0			0		0
	O ₇	5 (WW)	20.9	20.9	20.9		20.9			20.9		20.9
6	CH4	ppm	<500	<500	<500		<500			<500		0
	HIS	ppm	0	0	0		0			0		0
	0,	% (w/v)	20.9	20.9	20.9		20.9			20.9		20.9
							<500					
57	CH4	ppm	<500	<500	<500					<500		0
	HJS	ppm	0	0	0		0			0		0
	0;	1% (v/v)	20.9	20.9	20.9		20.9			20.0		20.9
58	CH.	ppm	<500	<500	<500		<500			*50C		0
	H ₂ S	ppm	0	0	0		0			0 7		0
	07	54 (V/V)	20.9	20.7	20.9		20.9			20.9		20.9
9	CH.	ppm	<500	<\$00	<500		<500			-500		0
	H,S	ppm	0	0	0		0			0		0
	0,				20.9		20.9	-				20.9
		% (viv)	20.9	20.9						20.3		
510	CH4	ppm	<500	<500	<500		<500			<500		0
	HjŚ	ppm	0	0	0		0			0		0
	0,	1% (viv)	20.9	20.9	20.9		20.9			20.9		20.9
511	CH4	ppm	< 500	<500	<500		<500			<500	VZ ·	0
	H ₂ S	ppm	0	0	0		0			0	777	0
	0,	36 (vie)	20.9	20.9	20.9		20.9		7	20.9	1277	20.9
12	CH.	and the second se	< 500	<500	<500		<500			<500		0
12		ppm										
	HIS	ppm	0	0	0		0			0		0
	02	5 (Wh)	20.9	20.9	20.9		20.9			20.9		20.9
12A	CHe	ppm	< 500	<500	<500		<500			-500		0
	H ₂ S	ppm	0	0	0		0					0
	02	\$ (W)	20.9	20.9	20.9		20.9	2223	77	20.9		20.9
128	CH,	ppm	<500	<500	<500		<500			<500		0
	H ₂ S	ppm	0	0	0		0			70		0
	0,	\$ (viv)	20.9	20.9	20.9		20.9			20.0		20.9
100												
512C	CH4	ppm	< 500	<500	<500		<500			<500		0
	H ₂ S	ppm	0	0	0		0			0		0
	02	S (MV)	20.9	20.9	20.9		20.9			20.9		20.9
512D	CH4	ppm	0	<500	<500		<500			<500		0
	H2S	ppm	0	0	0		0		17	0		0
	D ₂	% (v/v)	20.9	20.9	20.9		20.9			20.9	1	20.9
13	CH.	ppm	NM	NM	NM		Nhi	7		<500		0
		ppm	NM	NM	NM		NPA			0		0
	His		NM	NM			NM			20.9		20.9
	02	% (v/v)			NM				A			
14	CH4	ppm	<500	<500	<500		+500			<500		0
	H ₂ S	ppm	0	0	0		•			0		0
	Q ₂	% (VIV)	20.9	20.9	20.9		20.9		11	20.9		20.9
15	CH.	ppm	≪ 500	<500	<500	27	<500			<500		0
	H ₂ S	opm	0	0	0		0		71	0		0
	01	% (v/v)	20.9	20.9	20.9		20.9			20.9	-	20.9
16										<500	-	
	CH4	ppm	< 500	<500	<500		<500	hand and the				0
	H ₂ S	ppm	0	0	0		0			0		0
	0 ₂	% (VN)	20.0	20.9	20.9		20.9			20.9		20.9
	сн,	ppm	< 500	<500	<500		< 20	V 1		<500		0
	His	ppm	0	0	0		0			0		0
	Ø ₂	% (v/v)	20.9	20.9	20/3		20.9			20.9	19-10-10-10-10-10-10-10-10-10-10-10-10-10-	20.9
18	CH,	ppm	<500	<500	15%		-500			<500	-	0
	HIS	ppm	0	0	0		0			0		0
		% (v/v)	20.9	20.9	20.5		20.9			20.9		20.9
19	u.e	ppm	< 500	<500			0%			<500		0
	Сн. H2S 02	ppm	0	0	Û		0			0		0
		16 (v/v)	20.9	20.9	129		20.9			20.9		20.9
0	CH4	ppm	<500	<500	+500		<50'J			<500		0
	H	ppm	0	0	0		0			0		0
	H ₂ S O ₂	% (v/v)	20.9	20.8	20.9		20.9			20.9		20.9
	CH,	ppm	* 500	<:00	<500		<500			<500		0
	H.S	ppm	0	0	0		0			0		0
	н _г 5 Ој		20.9	20.9	20.9					20.9	-	20.9
		% (V/V)					20.9					
21	urly .	ppm	<500	<500	<5.00		<500			<500		0
	H ₂ S	ppm	0	2	0	2	0			0		0
	CH, H ₂ S O ₂	\$6 (MN)	2/.9	20.9	219		20.9			20.9		20.9
2	CH,	ppm	< 510	<500	<500		<500			<500		0
	H-S	ppm /	0	0	0		0			0		0
				20.9	20.9		20.9			20.9		20.9
	0.	14 MA + 4										
	0,	% (v/)	80.9									
3	CH,	96 (v/v) ppr.4	<500	<500 0	+500 U		<500			<500		0

TABLE 3: Sub -Surface Structure Emissions

Location	Parameter	Units		1 201 0 202	48.0	00.11 00	E 1	25-Sep-09	10.0	4 1- 20	10.0 - 00	Maximum CH, Reading
1412 EC4	011		28-Jun-08	28-Sep-08	15-Dec-08	28-Mar-09	5-Jun-09	25-Sep-00	19-Dec-09	4-Jun-10	16-Dec-10	1011001545104
SVV Outside reception	CH4 H2S	ppm	< 500	<500	<500		<500			<500		0
locopion	0	% (w/v)	20.9	20.6	20.9		20.9			20.9		20.9
SW Main Carpark	CH.	ppm	< 500	<500	<500		<500			<500		0
err men enpain	H ₂ S	ppm	0	0	0		0			0		0
	02	% (v/v)	20.9	20.6	20.9		20.9			20.9		20.9
SW Adjacent	CH4	ppm	NM	<500	<500		<500			<500		0
trampolines	H ₂ S	ppm	NM	0	0		0			0		0
	02	% (v/v)	NM	20.9	20.9		20.9			20.9		20.9
Store Room 1	CH4	ppm	<500	<500	<500		<500			1000	<500	1000
	H,S	ppm	0	0	0		0			0	0	0
	02	% (v/v)	20.9	20.9	20.9		20.9			20.9	20.9	20.9
Store Room 2	CH4	ppm	< 500	<500	<500		<500			500	<500	500
	H ₂ S O ₂	ppm	0 20.9	20.9	20.9		20.9			20.9	20.9	20.9
	CH4	% (v/v) ppm	* 500	<500	<500	<u> </u>	<500			<500	20,9	0
Mens toilet main entrence	H ₂ S	ppm	0	0	.0		0			0		0
	02	55 (v/v)	20.9	20.9	20.9		20.9			20.9		20.9
Electrical pil Beach	CH4	ppm	< 500	<500	<500		<500			<500		0
Volleyball	H,S	ppm	0	0	0		0			0		0
	02	% (v/v)	20.9	20.9	20.9		20.9			20.9		20.9
Dewatering Sump	CH4	ppm	< 500	<500	<500		<500			<5.00	7	0
- 7	H,S	ppm	0	0	0		0			0 //		0
	02	% (viv)	20.9	20.9	20.9		20.9			20.9	27	20.9
Confined Space	CH₄	ppm	<500	<500	<500		<500			<500		0
	His	ppm	0	0	0		0			0		0
	02	% (v/v)	20.9	20 9	20.9		20.9			20.3		20.9
Manhole	CH4	ppm	≪ 500	<500	<500		<500			<500		0
	His	ppm	0	0	0		0		- <u>×</u> 2	6		0
	02	% (v/v)	20,9	20.9	20.9		20.9			20.9		20.9
.1	CH4	ppm	<500	<500	<500		<500			<500		0
	H ₂ S	ppm	0	0	0		0			0		0
-	Ö ₂	% (viv)	20,9	20.9	20.9		20.9			20.9	5-6-6-	20.9
2	CH4	ppm	\$ 500	<500	<500		<500			<500		0
	HjŞ	ppm	0	0	0		0			0		0
	0,	% (viV)	20.9	20.9	20.9		20.9			20.9		20,9
13	CH4	ppm	<500 0	<500 0	<500		<500			< 300		0
	H ₂ S Öj	ppm	20.9	20.9	20.9		20.9		4 <u>-</u>	20.9		20.9
4	CH,	% (v/v)	< 500	<500	<500		<500			<500		0
_4	Hjs	ppm	0	0	0		0			0		0
	02	ppm % (v/v)	20.9	20.9	20.9		20.9			20.9		20.9
.5	CH,	ppm	< 500	<500	<500		<500			1500		0
	HIS	ppm	0	0	0		0			0	I	0
	02	96 (W/V)	20.9	20.9	20.9		20.8			21.9		20.9
.6	CH4	ppm	< 500	<500	<500		<5,01		-/7	<500		0
	HIS	Indd	0	0	0		0		7-2	0		0
	02	% (NV)	20.9	20.9	20.9		20.9		1/1/2	20.9		20.9
.7	CH4	ppm	≪ 500	<500	<500		<562	7		<500		0
	H ₂ S	ppm	0	0	0		2			0		0
	0,	36 (N/V)	20.9	20.9	20.9	1	20.9			20.9		20.9
.0	CH4	ppm	<500	<500	<500		<550	= =		<500		0
	H ₂ S	ppm	0	0	0		0			0		0
	02	% (viv)	20.9	20.9	20.9	5	20.9		511	20.9		20.9
.9	CH4	ppm	< 500	<500	<500		<500			<500		0
	H ₂ S	ppm	0	0	0	4	0			0		0
	0,	% (N)	20.9	20.9	20.9		20.9	40		20.9	Y	20,9
10	CH4	ppm	<500	<500	<500	\sim	<500		,	<500		0
	H ₂ S O ₂	ppm M 6-8-6	0	0	0		0 20.9			0 20.9		0
11	CH4	14 (v/v)	20.9	20.9	20.9	+	<510			<500		20.9
	H ₂ S	ppm	0	0	0	h	0	· · · · ·		0		0
	0,	ppm % (w/v)	20.9	20.9	20.9		20.0	l		20.9		20.9
12	CH.	ppm	<500	<500	407		eenn	h-h-	_	<500		0
	H ₂ S	ppm	0	0		(0		0
	02	% (v/v)	20.9	20.9	20.9	!	20.9			20.9		20.9
13	CH4	ppm	< 500	<500	450		6:70			<500	-	0
	HAS	mag	0	0	2	~	0			0		0
	H ₁ S 0 ₂	% (v/v)	20.9	20.9	20.5		20.9			20.9		20.9
14	CH.	ppm	<500	<500	500</td <td>11</td> <td><500</td> <td>1</td> <td></td> <td><500</td> <td></td> <td>0</td>	11	<500	1		<500		0
	HIS	ppm	0	0	0	77	0			0		0
	02	96 (WW)	20.9	1.0.9	20.9		20.9			20.9		20,9
Vestern Carpark	CH.	ppm	< 500	00.00	<500	· · · · · · · · · · · · · · · · · · ·	<500			<500		0
entral Stairs	H ₂ S	ppm	0	0	0		0			0		0
	0,	% (V/V)	20.9	20.9	20.9		20.9			20.9		20.9
	CH.	ppm	<500	<50.2	-50	<u></u>	<500		_	<500	1.0	0
V-Beach Volleyball		opm	0	2	0	1	0			0		0
	0,	14 (W/V)	20.9	20.9	20.9		20.9			20.9		20.9
	CH,	opm					<500	-		<500		0
		ppm.				5	0			0		0
tarage Containers										20.9		

Notes: Methema Trigger Level = 1.25 % WV or 12,500 ppr (Environmental Guidekner: Sok: Warte Landfills, NSW EPA, 1996) Shading indicate e exceedance of trigger level NM = location not monitored. * Partial monitoring round completed March 2009 E = Electricel pit S=Stormvater dnain L=Ligit prive

RECIPIENT'S COPY

Queensland Government

ABN 13 846 673 994

Improvement notice

This notice is issued under the Work Health and Safety Act 2011 section 191, Safety in Recreational Water Activities Act 2011 applied section 191 Work Health and Safety Act 2011 or Electrical Safety Act 2002 section 146. This notice requires the person (which includes a body corporate, government department or public authority) to whom it is issued to remedy a contravention of the Act or Regulations. The legislation requires that the person to whom an improvement notice is issued must, as soon as possible, display a copy of the notice in a prominent place at or near the workplace, or part of the workplace at which work is being carried out that is affected by the notice.

Work Health And Safety Acl 2011 Electrical Safety Act 2002 Safety in Recreational Water Activities Act 2011

Notice No. 1 1013320

Notice issued to:
Legal name of person/business or undertaking: Department of Education, Training and Employment
ABN: 76337613647 ACN:
rading as: The Runaway Bay Sport and Leadership Excellence Centre
Address: corner Sports Drive and Morala Avenue
Runaway Bay Queenstand Postcode: 4216
Details of contravention:
Site location
Figance office, north area building of complex
1. Jonathan Hasvard reasonably believe on Tuesday 18 Much 2014 at 1256
that you 🔲 are contravening a provision or 🖄 have contravened a provision in circumstances that make it likely that the contravention will continue or be repeated; of the:
Work Health and Safety Act 2011, section 🕅 Work Health and Safety Regulation 2011, regulation 2013 (2) atta
Electrical Safety Act 2002, section Electrical Safety Regulation 2002, regulation
Safety in Recreational Water Activities Act 2011, section Safety in Recreational Water Activities Regulation 2011, regulation
Brief description of how the provision is being or has been contravened:
The air inlet of the ducted air handling system, for the finance office, was excessively dirty with dust and/or grime. At inlet did not appear to be cleaned and no inspection record available for maintenance of this air inle
Directions (if any) as to the measures to be taken to remedy or prevent the contravention or likely contravention: It is mandatory to comply with these directions
The person with management or control of plant at a workeplace must ensure that the maintenance, inspection and it necessary testing of the plant (air bandwing system) must be carried outgain accordance with the
Recommendations (If any): Recommendations may be followed or you may adopt and follow another way that gives at least the same level of protection against the risk
manufacturer's recommendations if any ; or (b) there are no manufacturer's recommendations in accordance with the recommendations of a competent perso or in relation to inspection its is not reasonably practicable to comply with
Issuing inspector: paragraph @ or (b), annually
[HTaward 652- 0407 029 486
Signature of inspector 20/03/2014 Po Box 4215, Robina, QLd, H230
Date issued Inspector's location
This contravention must be remedied before: Service method:
03 / 04 / 2014 Fax Email Left at the person's last known place or business
Notice given to Relationship to person to whom notice is issued
This portion may be signed and returned where a contravention has been remedied before the stated date. I certify that the requirements of this notice have been complied with: Name (in block letters): FRANK BEBON Position: CHURF BNG(NBBR
Signature: Date complied: 20/3/2014 Notice No. 1 1013320
n inspector may make minor technical changes to this notice in certain circumstances. This does not change the validity of the notice. You must comply with this notice within the period stated. Hittine to comply with this notice may increase and the period stated. RIVACY COLLECTION STATEMENT To Department of Justice and Attorney-General collects, uses, discloses and stores information in accordance with legislation it administers and all applicable privacy laws. This includes information collected inspectors of the Department. Note that privacy laws do not apply in the fraws conflict or allow or require the collection of information, and do not apply to the collection of information, and do not apply to the collection of information, and do not collected apply to the collection of information is and non-compliance with privacy laws. This includes information by The Department of stice and Attorney-General to the extent that it is exercising its law enforcement functions and non-compliance with privacy legislation is deemed necessary to fulfil those functions. The Department of Justice and Attorney-General privacy information is on our website at www.Justice.qld.gov.au.

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 132 of 498

VAN WANROOY, Megan

From:	Service Manager Glennair <servicemanager@glennair.com.au></servicemanager@glennair.com.au>
Sent:	Wednesday, 5 June 2013 8:50 AM
То:	VAN WANROOY, Megan
Cc:	fbees1@eq.edu.au
Subject:	RE: Runaway Bay Sports Centre - Air Conditioning inspection in Spin Cycle room

Megan,

I attended to site and carried out the investigation of the air conditioning system located within the spin cycle room. Currently the room is served by 3 air conditioning units. I checked out the operation of each system and serviced each of them as they were very dirty. Filters have been washed and has assisted by increasing the airflow. Checked the temperature within the room on each system and found these are all within their range.

I have provided the following answers as per your previous request.

- 1. I am unable to give you the air changes per hour.
- 2. There is no fresh air into this room
- 3. Each system delivers approximately 200 litre per second.
- 4. Each system has their own return air grille located in the middle of each unit.
- 5. There is no ducted air of any description coming into the room.

From the operation of this room I note the following:

- 1. During each class, the front door and the louvre grille windows on each side of the door are closed and then a curtain is pulled in front. This is all done to reduce the noise. This would be the quickest way of introducing fresh air but I believe noise to be an issue.
- 2. Issues of the sweat and condensation buildup are not related to the air conditioning. This is a room that has 30 people performing a high intensity exercise fully locked up.
- 3. Temperature on all units was set to 18 degrees. The systems are not designed to operate at this temperature. There would not be an instance where the systems during a class would ever get to this temperature and as such the units would be running at 100% with no benefit. Set the temperature to 23 degrees would be wiser. Setting the temperature down will not make the systems work harder, it will only make them run longer.

As provided to you previously, we have installed these systems as per the design of the consulting engineer. I would suggest that in the first instance, that an engineer is engaged to determine the most cost effective solution to the situation. We are able to provide you with options and costs as well, that is entirely up to you. Should you wish to discuss this further, please contact the undersigned at your convenience.

Regards

Tim Livanes

1

DUCTED SYSTEMS SPLIT SYSTEMS MECHANICAL SERVICES

P 07 5593 8000 F 07 5593 8009 E admin@glennair.com.au 23/4 Fremantle Street Burleigh Heads Qld 4220 PO Box 2335 Burleigh 4220 OLD / NSW Lie

From: VAN WANROOY, Megan [mailto:Megan.VANWANROOY@dete.qld.gov.au] Sent: Tuesday, 4 June 2013 11:54 AM To: Service Manager Glennair Subject: RE: Runaway Bay Sports Centre - Air Conditioning inspection in Spin Cycle room

Hi Tim

Can you please advise if you went to site to check on the AC, and if so, when do you expect to have some info to me regarding the issues that have been bought to our attention.

Thank you

Megan Van Wanrooy | Senior Facilities Services Officer Department of Education, Training & Employment I South East Region p: 0439 737 611 | f: 5583 4462 | e: Megan.vanwanrooy@dete.qid.gov.gu PO Box 557 Robina DC Qld 4226 | level 2, 235 Varsity Parade Varsity Lakes 4227

From: Service Manager Glennair [mailto:servicemanager@giennair.com.au] Sent: Tuesday, 28 May 2013 1:00 PM To: VAN WANROOY, Megan Subject: RE: Runaway Bay Sports Centre - Air Conditioning inspection in Spin Cycle room

Megan,

I have attached our "as installed" drawing for this project. These are as per the consultants drawings as they were the designers and we installed this equipment as per their directions. This will show you exactly what is going on site. I will be going to site this coming Thursday.

Regards

Tim Livanes

enr

We put the climate in your control

DUCTED SYSTEMS SPLIT SYSTEMS AIRCONDITIONING MECHANICAL SERVICES P 07 5593 8000 F 07 5593 8009

E admin@glennair.com.au

23/4 Fremantle Street Burleigh Heads Old 4220 PO Box 2335 Burleigh 4220 QED / NSW Lie

From: VAN WANROOY, Megan [mailto:Megan.VANWANROOY@dete.qld.gov.au] Sent: Monday, 27 May 2013 2:42 PM

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 134 of 498

To: servicemanager@glennair.com.au

Subject: RE: Runaway Bay Sports Centre - Air Conditioning inspection in Spin Cycle room

Hi Tim

Are you able to answer the questions below regarding the AC at Runaway Bay?

- What is the number of air cycles per hour in the Spin Cycle Room
- What is the fresh air proportion of the air intake
- What is the air flow (velocity) rate at the supply air registers
- How many return air vents have been installed into the Spin Cycle room.
- Does the ducted air system have the flexibility to provide increased air cycles during spin classes without affecting the adjacent conference room.

Thank you

Regards

Megan Van Wanrooy | Senior Facilities Services Officer

Department of **Education**, Training & Employment I **South East Region p: 0439 737 611 | f:** 5583 4462 | **e:** <u>Megan.vanwanrooy@dete.ald.gov.au</u> PO Box 557 Robina DC Qld 4226 | level 2, 235 Varsity Parade Varsity Lakes 4227

From: VAN WANROOY, Megan Sent: Thursday, 23 May 2013 5:00 PM To: 'servicemanager@glennair.com.au' Subject: Runaway Bay Sports Centre - Air Conditioning inspection in Spin Cycle room

Hi Tim

As discussed, we have had information from Runaway Bay Sports Centre, that their new air conditioning isn't operating efficiently for the use of one of the room.

The spin cycle room is getting very hot and humid during classes. There are approximately 20 people in the class for an hour at a time.

There are WPH&S concerns about the treshness of the return air, condensation build up, pools of sweat on the floor.

Can you please inspect the system.

I believe I will need to get an independent company in to do air quality testing, for health issues, however I thought it would be good to start with your company first as you installed the system and would know its operation.

The site contact is Vivien Weston - ph: 5500 9970 and/ Or Frank Beeson on ph: 0414 791 263

Can you please let me know when you will be able to attend to do this

Thank you

Regards

Megan Van Wanrooy | Senior Facilities Services Officer

Department of **Education**, Training & Employment I **South East Region p: 0439 737 611** | **f:** 5583 4462 | **e:** <u>Megan.vanwanrooy@dete.qld.gov.au</u> PO Box 557 Robina DC Qld 4226 | level 2, 235 Varsity Parade Varsity Lakes 4227

*********** This message (including attachments) is intended for the addressee named above. It may also be confidential, privileged and/or subject to copyright. If you wish to forward this message to others, you must first obtain the permission of the author. If you are not the addressee named above, you must not disseminate, copy, communicate or otherwise use or take any action in reliance on this message. You understand that any privilege or confidentiality attached to this message is not waived, lost or destroyed because you have received this message in error. If you have received this message in error please notify the sender and delete from any computer. Unless explicitly attributed, the opinions expressed in this message do not necessarily represent the official position or opinions of the State of Queensland or the Department of Education, Training and Employment. Whilst all care has been taken, the Department of Education, Training and Employment disclaims all liability for loss or damage to person or property arising from this message being infected by computer virus or other contamination.

4

10 May 2014

Runaway Bay Sport and Leadership Excellence Centre Corner of Sports Drive and Morala Ave Runaway Bay, Qld 4216

SPORTS SUPER CENTRE - RUNAWAY BAY AIR QUALITY TESTING IAQ-Q18717i

1.0 Introduction

Envirohealth Consulting Pty Ltd was requested by Melanie Cowan of the Department of Education, Training and Employment to undertake airborne temperature, humidity, carbon monoxide, and carbon dioxide air quality testing within one location in the office area and microbiological swab testing in two locations within the ducting and air-conditioning system. The testing was undertaken as a follow up to testing undertake on the 21st of March. The air sampling was conducted on the 7th of May, 2014. The following highlights the results of the tests and any further recommendations.

2.1 Temperature and Humidity - Office area.

The temperature measurements taken within the room tested was 24.4°C. The results of the temperature measurement was within the defined comfort limits for the time of year at which the sampling was undertaken. The results of the temperature measurements are shown in Table 5.3. The relative humidity measurement within the office area tested was 51.5%. The relative humidity measurement was within the recommended comfort limits. The results of the relative humidity measurements are shown in Table 5.3.

Appress. Unit 7.7210 Ougensport Road North Awrarrie Old 4172. DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 137 of 498

2.2 Carbon Monoxide - Office area.

The short term level of carbon monoxide measured within the office area tested was 1.0 ppm. The carbon monoxide measurement indicate there is adequate ventilation in the room tested. The results of the carbon monoxide measurements are shown in Table 5.4, and are expressed in parts per million.

2.3 Carbon Dioxide - Office area.

The highest short term level of carbon dioxide measured within the office was 722ppm. These measurements indicate adequate ventilation in the room tested. The results of the carbon dioxide measurements are shown in Table 5.4. The results shown are expressed in parts per million.

3.0 Microbiological Samples - Office area.

3.0.1 Airborne Microbiological Samples

The airborne concentrations of bacteria within the indoor environment tested was 380 cfu/m³

The airborne concentration of fungi within the indoor environment tested was <100 cfu/m³.

The airborne concentration of yeast within the indoor environment was 0 cfu/m³. The results of the airborne microbiological samples are shown in Table 5.2, and are expressed in colony forming units per cubic metre of air (cfu/m³).

Airborne microbiological samples were taken using a high velocity air sampler and drawing a known volume of air over a culture medium suitable for the growth of fungi and bacteria. The sample was then cultured and analysed using a microscope. The result was then converted to and reported in colony forming units per cubic metre (cfu/m³). Interpretation of these results is however difficult as there are no environmental or occupational exposure standards set for microbiological contaminants at the present time. There is, however literature including

IAQ-18717i

Healthy Buildings International Magazine - May/June 1991 which suggests a level of $250 - 750 \text{ cfu/m}^3$ as being the normal comfort range for airborne microbes, with unhealthy ranges starting as low as > 750 cfu/m³. Concentrations over 1000 CFU/m³ may suggest possible indoor sources of fungi or poor filtration in the HVAC system. The samples taken within the sampled environments were found to be less than these recommended levels.

3.0.2 Surface Microbiological Samples

The surface concentration of colony forming units (bacteria, fungus, and yeast) within the air handling systems of the building were <100 cfu/swab. The results in Table 5.6 are expressed in colony forming units per cfu/swab.

4.0 Recommendations

There are no recommendations at this time.

5.0 Test Results

Table 5.1 Locations of Air Samples

Sample Number	Location	
SP01	Office Reception	

Table 5.2 Microbiological Air Sample Measurements and Types - Bacteria and Yeast

Sample	Bacteria	Predominate Type (cfu/m ³)	Yeast
SP01	380	OB*	0

* SFB - Spore Forming Bacteria; GPC - Gram Positive Cocci; OB - Other Bacteria

IAQ-18717i

Table 5.3 Temperature and Relative Humidity Measurements

Number	Temperature (⁰ C)	Relative Humidity (%)
SP01	24.4	51.5
Table 5.4 Gas Mo	a gunan an ta	
Table 5.4 Gas Ivie	casurements	
Sample Number	Carbon Monoxide (pp	om) Carbon Dioxide (opm)
CTD 0 1	10	700
SP01	1.0	722
	1.0 iological surface sample lo Locations	
Table 5.5 Microb	iological surface sample lo Locations Ground Level - Back Offi	ocations

Table 5.7 Microbiological Surface sample results

Sample	Bacteria	Yeast (cfu/m³)	Fungus
RBS01	<100	<100	<100
RBS02	<100	<100	100

Reported:

Michael Moecker Operations Manager

IAQ-18717i

10 May 2014

Runaway Bay Sport and Leadership Excellence Centre Corner of Sports Drive and Morala Ave Runaway Bay, Qld 4216

SPORTS SUPER CENTRE - RUNAWAY BAY AIR QUALITY TESTING IAQ-Q18334i

1.0 Introduction

IAQ-18374i

Envirohealth Consulting Pty Ltd was requested by Melanie Cowan of the Department of Education, Training and Employment to undertake airborne temperature, humidity, carbon monoxide, and carbon dioxide air quality testing within one location in the office area and microbiological swab testing in two locations within the ducting and air-conditioning system. The testing was undertaken as a follow up to testing undertake on the 21st of March. The air sampling was conducted on the 7th of May, 2014. The following highlights the results of the tests and any further recommendations.

2.1 Temperature and Humidity - Office area.

The temperature measurements taken within the room tested was 24.4°C. The results of the temperature measurement was within the defined comfort limits for the time of year at which the sampling was undertaken. The results of the temperature measurements are shown in Table 5.3. The relative humidity measurement within the office area tested was 51.5%. The relative humidity measurement was within the recommended comfort limits. The results of the relative humidity measurements are shown in Table 5.3.

2.2 Carbon Monoxide - Office area.

The short term level of carbon monoxide measured within the office area tested was 1.0 ppm. The carbon monoxide measurement indicate there is adequate ventilation in the room tested. The results of the carbon monoxide measurements are shown in Table 5.4, and are expressed in parts per million.

2.3 Carbon Dioxide - Office area.

The highest short term level of carbon dioxide measured within the office was 722ppm. These measurements indicate adequate ventilation in the room tested. The results of the carbon dioxide measurements are shown in Table 5.4. The results shown are expressed in parts per million.

3.0 Microbiological Samples - Office area.

3.0.1 Airborne Microbiological Samples

The airborne concentrations of bacteria within the indoor environment tested was 380 cfu/m³

The airborne concentration of fungi within the indoor environment tested was <100 cfu/m³.

The airborne concentration of yeast within the indoor environment was 0 cfu/m³.

The results of the airborne microbiological samples are shown in Table 5.2, and are expressed in colony forming units per cubic metre of air (cfu/m³).

Airborne microbiological samples were taken using a high velocity air sampler and drawing a known volume of air over a culture medium suitable for the growth of fungi and bacteria. The sample was then cultured and analysed using a microscope. The result was then converted to and reported in colony forming units per cubic metre (cfu/m³). Interpretation of these results is however difficult as there are no environmental or occupational exposure standards set for microbiological contaminants at the present time. There is, however literature including

IAQ-18374i

Healthy Buildings International Magazine - May/June 1991 which suggests a level of 250 - 750 cfu/m³ as being the normal comfort range for airborne microbes, with unhealthy ranges starting as low as > 750 cfu/m³. Concentrations over 1000 CFU/m³ may suggest possible indoor sources of fungi or poor filtration in the HVAC system. The samples taken within the sampled environments were found to be less than these recommended levels.

3.0.2 Surface Microbiological Samples

The surface concentration of colony forming units (bacteria, fungus, and yeast) within the air handling systems of the building were <100 cfu/swab. The results in Table 5.6 are expressed in colony forming units per cfu/swab.

4.0 Recommendations

There are no recommendations at this time.

5.0 Test Results

Table 5.1 Locations of Air Samples

Sample		
Number	Location	
SP01	Office Reception	

Table 5.2 Microbiological Air Sample Measurements and Types - Bacteria and Yeast

Sample	Bacteria	Predominate Type (cfu/m ³)	Yeast
SP01	380	OB*	0

* SFB - Spore Forming Bacteria; GPC - Gram Positive Cocci; OB - Other Bacteria

Table 5.3 Temperature and Relative Humidity Measurements

Sample Number		Temperature (⁰ C)	1	Relative Humidity (%)
SP01		24.4		51.5
Table 5.4 G Sample Nui		rements Carbon Monoxide (p	opm) Carbon D	ioxide (ppm)
SP01		1.0	722	
Table 5.5 M	licrobiolo	gical surface sample l	locations	
		gical surface sample l Locations	locations	
Table 5.5 M Sample Nui RBS01	mber	Locations ound Level - Back Off		y Air
Sample Nu	mber	Locations ound Level - Back Off	ice area - Supply	
Sample Nur RBS01 RBS02	mber Gr	Locations ound Level - Back Off Level 1 - Plant Room gical Surface sample	ice area - Supply Vent a - Cooling coils	

Reported:

RBS02

Michael Moecker Operations Manager

<100

<100

IAQ-18374i

100

27 March 2014

Runaway Bay Sport and Leadership Excellence Centre Cnr Sports Drive and Morala Ave Runaway Bay, Qld 4216

SPORTS SUPER CENTRE - RUNAWAY BAY AIR QUALITY TESTING

IAQ-Q18334i

1.0 Introduction

Envirohealth Consulting Pty Ltd was requested by Frank Beeson of Runaway Bay Sport and Leadership Excellence Centre to undertake airborne microbiological, temperature, humidity, carbon monoxide, and carbon dioxide air quality testing in three locations located within the Sports Super Centre complex at Runaway Bay. The air sampling was conducted on the 21st of March, 2014.

2.1 Temperature and Humidity

The temperature measurements taken within the occupied areas of the building tested ranged from 22.6°C to 24.5°C. The results of the temperature measurements are within defined comfort limits for the time of year at which the sampling was undertaken. The results of the temperature measurements are shown in Table 4.4.

The relative humidity measurements within the building tested ranged from 58.1% to 76.2%. The relative humidity measurements were slightly higher then recommended comfort limits. The results of the relative humidity measurements are shown in Table 4.4.

DETE RTI application 340/5/3308 - File A: South East Regional Offices - Document 145 of 498

Brisbane Office

Townsville Office

2.2 Carbon Monoxide

The highest short term level of carbon monoxide measured within the building was 1.0 ppm and 1.1 ppm. The carbon monoxide measurements indicate there is adequate ventilation throughout the indoor environments. The results of the carbon monoxide measurements are shown in Table 4.5, and are expressed in parts per million.

2.3 Carbon Dioxide

The short term levels of carbon dioxide measured within the building ranged from 660 ppm to 733 ppm. These measurements indicate there is good ventilation throughout the indoor environments. The results of the carbon dioxide measurements are shown in Table 4.5. The results shown are expressed in parts per million.

3.0 Microbiological Samples

3.0.1 Airborne Microbiological Samples

The airborne concentration of bacteria within the indoor environments tested ranged from 308 cfu/m³ to 332 cfu/m³.

The airborne concentration of fungi within the indoor environments ranged from 40 cfu/m³ to 816 cfu/m³. Predominate fungus found was Non-phylloplane Fungi.

The airborne concentration of yeast within the indoor environments were below <5 cfu/m³

The results of the airborne microbiological samples are shown in Table 4.2, and are expressed in colony forming units per cubic metre of air (cfu/m³).

Airborne microbiological samples were taken using a high velocity air sampler and drawing a known volume of air over a culture medium suitable for the growth of fungi and bacteria. The sample was then cultured and analysed using a microscope. The result was then converted to and reported in colony forming units per cubic metre (cfu/m³). Interpretation of these results is however difficult as there are no environmental or occupational exposure standards set for

IAQ-18334i

microbiological contaminants at the present time. There is, however literature including Healthy Buildings International Magazine - May/June 1991 which suggests a level of 250 - 750 cfu/m³ as being the normal comfort range for airborne microbes, with unhealthy ranges starting as low as > 750 cfu/m³. Concentrations over 1000 CFU/m³ may suggest possible indoor sources of fungi or poor filtration in the HVAC system. The samples taken within the sampled environments were found to be less than these recommended levels.

Phylloplane Fungi is a leaf derived type commonly found in outdoors air. *Phylloplane Fungi* is also commonly found in household dust on internal surfaces. Fungal spores are designed for airborne dispersal from surface growth. *Phylloplane Fungi* is not commonly associated with harmful health effects although persons with a hypersensitivity disposition or chronic respiratory conditions may experience respiratory health effects. *Non-phylloplane Fungi* can be used as an indicator of moisture or water based problems. The samples taken within Sports Super Centre, Runaway Bay were found to be below these recommended levels. However, the results from sample (GC02) in the office area indicate there may be a moisture problem within the air conditioning system for that area.

4.0 Test Results

Table 4.1 Locations of Air Samples

Sample

Number	Location
GC01	Photo copy room behind reception - centre room (vent above mail)
GC02	Office area behind reception - centre room (vent above desk)
GC03	Group Sales - centre desk near entry

IAQ-18334i

Sample	Bateria	Predominate Type (cfu/m ³)	Yeast
GC01	308	OB*	<5
GC02	308	OB*	<5
GC03	332	OB*	<5

Table 4.2 Microbiological Air Sample Measurements and Types - Bacteria and Yeast

* SFB - Spore Forming Bacteria; GPC - Gram Positive Cocci; OB - Other Bacteria

Table 4.3 Microbiological Air Sample Measurements and Types - Fungus

Sample	Fungus (cfu/m ³)	Predominate Type
GC01	40	Non Phylloplane
GC02	816	Non Fhylloplane
GC03	356	Non Phylloplane

Table 4.4 Temperature and Relative Humidity Measurements

Number	Temperature (⁰ C)	Relative Humidity (%)
GC01	2,2.6	58.9
GC02	23.4	58.1
GC03	24.5	76.2

Table 4.5 Gas Measurements

Sam	ole
-----	-----

Number Carbon Monoxide (ppm) Carbon Dioxide (ppm)

GC01	1.1	702	
GC02	1.0	660	
GC03	1.0	733	

Reported:

Michael Moecker Operations Manager

IAQ-18334i

27 May 2013

Frank Beeson Runaway Bay Sport and Leadership Excellence Centre Cnr Sports Dr & Morala Ave RUNAWAY BAY QLD 4216

Letter send by email Fbees1@eq.edu.au

Dear Frank,

Landfill Gas Monitoring April and May 2013 Monitoring Events (3)

1 Introduction

GHD was commissioned by The Runaway Bay Sport and Leadership Excellence Centre (RBSLEC) to undertake a round of landfill gas monitoring at the former landfill site, now operating as the RBSLEC, located at the corner of Morala Avenue and Sports Drive, RUNAWAY BAY, Queensland (hereafter referred to as the site).

This round of monitoring was conducted on 22 April 2013 and incorporated structure locations nominated within the Landfill Gas Monitoring Map (Brisbane City Council, 2001). A copy of this site map is provided as Attachment 1.

Following the detection of an elevated methane concentration within one underground electrical service pit at the site, GHD was commissioned to undertake two additional monitoring events on 30 April 2013 and 9 May 2013 to investigate methane recovery within the service pit. This electrical service pit (identified as E3 on the site map) was located to the north-west of the beach volley ball court and is in the vicinity of other service pits and buildings that are regularly in use.

GHD has conducted landfill gas monitoring at the request of the RBSLEC since 2007. The previous landfill gas monitoring event was conducted by GHD in December 2010.

Details of the 22 April, 30 April and 9 May monitoring rounds are provided in the attached memos (and summarised in the following sections):

- Memorandum to Runaway Bay Sport and Leadership Excellence Centre dated 27/5/13, document number 41/26317/448440 regarding "Landfill Gas Monitoring Round 22 April 2013"
- Memorandum to Runaway Bay Sport and Leadership Excellence Centre dated 27/5/13, document number 41/26317/44848 regarding "Landfill Gas Monitoring Round 30 April 2013"
- Memorandum to Runaway Bay Sport and Leadership Excellence Centre dated 27/5/13, document number 41/26317/44567 regarding "Landfill Gas Monitoring Round 9 May 2013"

This letter is subject to and should be read in conjunction with the limitations detailed in Section 7.

GHD Pty Ltd ABN 39 008 488 373 145 Ann Street Brisbane QLD 4000 GPO Box 668 Brisbane QLD 4001 Australia T 61 7 3316 3000 F 61 7 3316 3333 E bnemail@ghd.com W www.ghd.com DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 150 of 498

Our ref:41/26317/447706 Your ref:

2 Methodology

The landfill gas monitoring events were undertaken on 22 April 2013, 30 April 2013 and 9 May 2013 by a suitably qualified Environmental Scientist using calibrated portable field measurement units to obtain instantaneous measurements of the methane, oxygen, carbon monoxide and hydrogen sulphide concentrations. The attached memos detail the individual monitoring events Calibration certificates are provided in Attachment 3.

Monitoring was conducted in general accordance with the requirements of the Site Management Plan and with reference to the Environmental Guidelines: Solid Waste Landfills (NSW EPA, 1996).

The monitoring undertaken during these three rounds included the following:

2.1.1 22 April 2013 –

This assessment included monitoring of 4 soil atmosphere gas wells located along the eastern boundary of the site (Morala Avenue); and 112 structures locations (including subsurface electrical pits, light poles, stormwater pits and some site buildings). These locations were located across the site and were identified from the site map provided as Attachment 1. Surface emission monitoring was not conducted under this scope of work.

2.1.2 30 April 2013 -

An initial gas reading was taken within and immediately above the E3 pit at 10 am representing 24 hours potential accumulation. The electrical pit was then opened and vented until the methane level was consistent with the 10 am ambient atmospheric reading. This took less than 10 minutes. The pit cover was then replaced and hourly potential accumulation readings were recorded within E3 (between 11 am and 3 pm).

One round of gas monitoring was conducted within the nine, two story accommodation blocks and two, one story grounds buildings in the vicinity. Rooms on both lower and upper levels and service connections into and within the buildings were targeted. Landfill gas levels were also checked within the underground services pit adjacent to E3 and the accommodation blocks intermittently between 11 am and 3 pm. A sketch of additional service pits observed (and monitored) on April 22 and 30 are included as Attachment 2.

RBSLEC advised that they were not aware of any updated service pit/ site construction drawings being available for the review (beyond Figure 1 attached). Therefore GHD completed a Dial before You Dig (DBYD) search request which confirmed the presence of Energex electricity connections along the northern and eastern boundaries of the site, and the presence of Telstra cables along the eastern boundary of the site. Details of on-site connections could not be assessed beyond site observation (based on the visual identification of underground service pits and connections boxes located on the walls of the accommodation blocks). A copy of these plans is provided in Attachment 5

2.1.3 9 May 2013

As per the recommendations following the 30 April round, a two staged approach was adopted on 9 May 2013. Initially, landfill gas monitoring to assess one week potential gas accumulation was conducted within E3, at the ambient atmospheric level immediately above E3, and within other underground service pits in the immediate vicinity. Based on the low methane levels measured and discussion with RBSLEC, an additional stage of monitoring was not conducted (that proposed to repeat landfill gas monitoring within the nearby site buildings and also to repeat monitoring on other nearby underground structures).

3 Results

Results tables for this round are provided in Attachment 4:

Table 1 - General Observations;

Table 2 - Boundary Soil Atmosphere Gas Wells Results;

Table 3 – Sub-Surface Structure Emission Results

Table 4 – Detailed Results 22 April 2013

Table 5 - Results 30 April 2013; and

Table 6 – Results 9 May 2013.

For all three monitoring rounds, concentrations of oxygen, carbon monoxide and hydrogen sulphide at all locations monitored were as follows:

- Oxygen: 20.9% v/v;
- Carbon monoxide: 0 ppm; and
- Hydrogen sulphide: 0 ppm.

These results meet the adopted trigger guidelines of oxygen (20.9% v/v), carbon monoxide (0 ppm); and hydrogen sulphide (0 ppm).

It should be understood that the instrument used to complete the monitoring is not methane specific, rather it monitors for a range of hydrocarbons and other easily flammable components (collectively referred to as "flammable gas"). It is common practice in the waste industry to monitor for flammable gas at landfill sites and use the results as a proxy for methane emissions. It should therefore be understood that the "methane" results detailed below are essentially indicative of "flammable gas".

Methane results from the 22 April, 30 April and 9 May monitoring rounds are provided in the attached memos (and summarised below).

3.1.1 Methane results 22 April 2013

Methane concentrations detected at all monitored locations on 22 April 2013 were less than the relevant adopted trigger level (12,500 ppm methane) during this round of monitoring, with the exception of Structure E3 where accumulated methane levels greater than 50 ,000 ppm were detected (during an initial and also a follow up measurement after one hour for confirmation purposes as this result exceeded

the lower explosive limit for methane (50,000 ppm) and represented an explosion risk if any potential ignition sources were to be introduced to the area).

Methane levels less than the adopted trigger level (12,500 ppm methane) were detected within all other structure locations included in this round of monitoring, however a number of other service pit locations identified methane concentrations > 1000 ppm during the 22 April monitoring round indicating that methane is entering and accumulating within these structures. This included:

- E25 (an electrical pit located in the northern end of the west car park) at 9,500 ppm methane;
- E12 (an electrical pit located in the northern end of the west car park) at 1.050 ppm methane; and
- Location West Carpark, Right NW corner (an electrical pit located in the west car park) at 1,150 ppm methane.

3.1.2 Methane results 30 April 2013

Based on the elevated results within E3, follow-up monitoring was conducted on 30 April following venting of the E3 electrical pit by site staff, and replacement of the cover on 29 April 2013. Results for E3 and other site structures monitored that day were less than the adopted trigger level (12,500 ppm).

The accumulated methane level detected after 24 hours of the pit being closed was 1250 ppm. This confirmed that methane is migrating into the pit over relatively short durations.

Following venting and replacement of the pit lid, hourly gas reading were conducted over 5 hours, with a maximum methane concentration of 1,850 ppm (12 pm measurement, representing 2 hours potential accumulation).

The maximum methane concentration detected in the atmosphere immediately above and in the vicinity of E3 and also within the accommodation buildings 1 to 9, the two storage sheds located adjacent to accommodation building 9 and the electrical connection boxes attached to these buildings was 55 ppm (against the adopted ambient methane trigger level of 500 ppm).

3.1.3 Methane results 9 May 2013

The methane concentrations within all structures monitored on 9 May were less than the adopted trigger level (12,500 ppm).

The accumulated methane concentration detected after 9 days of E3 being closed was 460 ppm. This represents a decrease from the previous monitoring round. This may be due to site specific and climatic conditions. RBSLEC staff confirmed the pit had remained closed between monitoring rounds.

The maximum methane level detected in the atmosphere immediately above and in the vicinity of E3 was 15 ppm (against the adopted ambient methane trigger level of 500 ppm).

The maximum methane level detected within nearby service pits (immediately adjacent to E3) was 80 ppm.

4 Quality Assurance / Quality Control Procedures

In order to have confidence in the landfill gas monitoring data generated during the landfill gas monitoring rounds, suitable quality assurance and quality control procedures were used. The quality assurance and quality control procedures used during the April and May 2013 monitoring rounds included the following:

- The monitoring equipment used was calibrated prior to its use on-site and was verified in the field prior to use each day and during the completion of the monitoring by monitoring personnel. Instrument specifications and calibration certificates for the monitoring instrumentation are included in Attachment 3;
- Monitoring was conducted by a suitably experienced environmental scientist with reference to the Site Based Management Plan and the *Environmental Guidelines: Solid Waste Landfills* (NSW EPA, 1996) as far as practicable.

5 Project Conclusions

It is noted that this project has been a moving target and as such a number of the interim conclusions and recommendations have been superseded / acted upon. This section provides a summary of the overarching conclusions:

- The Site continues to generate landfill gas containing methane;
- Monitoring of site structures was not exhaustive and was limited to those locations detailed within Section 2 and included within the attached results tables;
- The methane level within structure location E3 (an electrical pit located to the north west of the beach volley ball court) was assessed as being greater than both the adopted trigger level (12,500 ppm) and also than the lower explosive limit of methane (50,000 ppm) during a landfill gas monitoring round conducted on 22 April 2013. This is a significant methane accumulation within this structure. Methane concentrations of that magnitude require immediate attention and management.
- Follow up monitoring of the E3 electrical pit, conducted after the E3 pit was vented indicated that during the assessment period it took one to two hours for methane levels to build up to greater than 1,000 ppm and potentially longer than one week for the methane to build up to levels greater than the lower explosive limit of methane (50,000 ppm).
- All remaining nominated structure monitoring locations able to be accessed on 22 April 2013 were
 less than the relevant adopted trigger level (12,500 ppm methane) during this round of monitoring.
 However an increase in methane concentration at electrical pit E25 since the last monitoring round in
 December 2010 (500 ppm) should be scrutinised in future monitoring rounds to confirm if an
 increasing trend is occurring within that electrical pit; and
- There has been a noted subsidence in the area of up to 300 mm between E2 and E3 to the west of the beach volley ball court (which had been backfilled with gravel since the last landfill gas monitoring event at that location in June 2010). This may have resulted in a potential compromise of the capping layer that is contributing to the methane accumulation within E3. There were sewer manholes observed within the area (including within 5m of E3), however the absence of the

detection of hydrogen sulphide within the service pits does not indicate this as a cause of the methane accumulation.

6 Project Recommendations

Based on the over-arching conclusions contained in Section 5 above, the following recommendations are made:

- Continued use of the barricades currently in place. These are to be extended to the edge of the canopy (3-5m from pit) if possible until the next monitoring event. Hot works (ie. works with any source of ignition) should be excluded from the area unless gas monitoring is conducted prior to and during the activity
- 2. It is recommended that a follow up round of monitoring be conducted within the next two weeks (to check the potential methane accumulation levels after one month of leaving the cover in place). This can be in a staged approach as previous. Stage 1 Monitoring of the E3 electrical pit, the ambient level immediately above the E3 pit, and also other underground service pits in the immediate vicinity. If results of E3 are greater than 10,000 ppm then continue to Stage 2 conduct landfill gas monitoring within the nearby site buildings (and also recheck the other nearby underground service pits) to confirm landfill gas is not accumulating within these structures. Where results within E3 remain below 10,000 ppm, this methodology to be continued monthly until 3 consecutive monitoring rounds of monitoring is completed.
- 3. RBSLEC to regularly vent the E3 pit or consider installation of other passive venting systems. (GHD can provide further guidance if required).
- 4. A full round of landfill gas monitoring within 3 months (of all nominated structures including accommodation blocks and maintenance sheds in the vicinity of E3) to confirm that the elevated methane levels detected within E3 are not expanding to other nearby structures, and also to confirm if an increase in methane levels is occurring within E25 (in the west carpark) that may progress to greater than the adopted trigger level (12,500 ppm).
- 5. A more detailed gas assessment should be undertaken if methane results continue to exceed adopted trigger levels or an increase in methane concentration continues. This investigation should assist to identify migration paths for methane and sensitive receptors.
- 6. An assessment of the capping should also be considered in the areas of subsidence.

7 Limitations and Quantifications of Letter

This letter has been prepared by GHD for Runaway Bay Sport and Leadership Excellence Centre and may only be used and relied on by Runaway Bay Sport and Leadership Excellence Centre for the purpose agreed between GHD and the Runaway Bay Sport and Leadership Excellence Centre as set out in section 1 of this Report.

GHD otherwise disclaims responsibility to any person other than Runaway Bay Sport and Leadership Excellence Centre arising in connection with this letter. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this letter were limited to those specifically detailed in the letter and are subject to the scope limitations set out in the letter.

The opinions, conclusions and any recommendations in this letter are based on conditions encountered and information reviewed at the date of preparation of the letter. GHD has no responsibility or obligation to update this letter to account for events or changes occurring subsequent to the date that the letter was prepared.

The opinions, conclusions and any recommendations in this letter are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points. Investigations undertaken in respect of this letter are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this letter.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this letter. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this letter if the site conditions change.

If you have any questions or require any further details, please don't hesitate to contact Adam Major or myself.

Yours sincerely,

Report Prepared By:

Belinda Oberia

Environmental Scientist (07) 3316 3954

GHD Pty Ltd

Approved for Issue

Adam Major

Senior Environmental Engineer (07) 3316 3587

GHD Pty Ltd

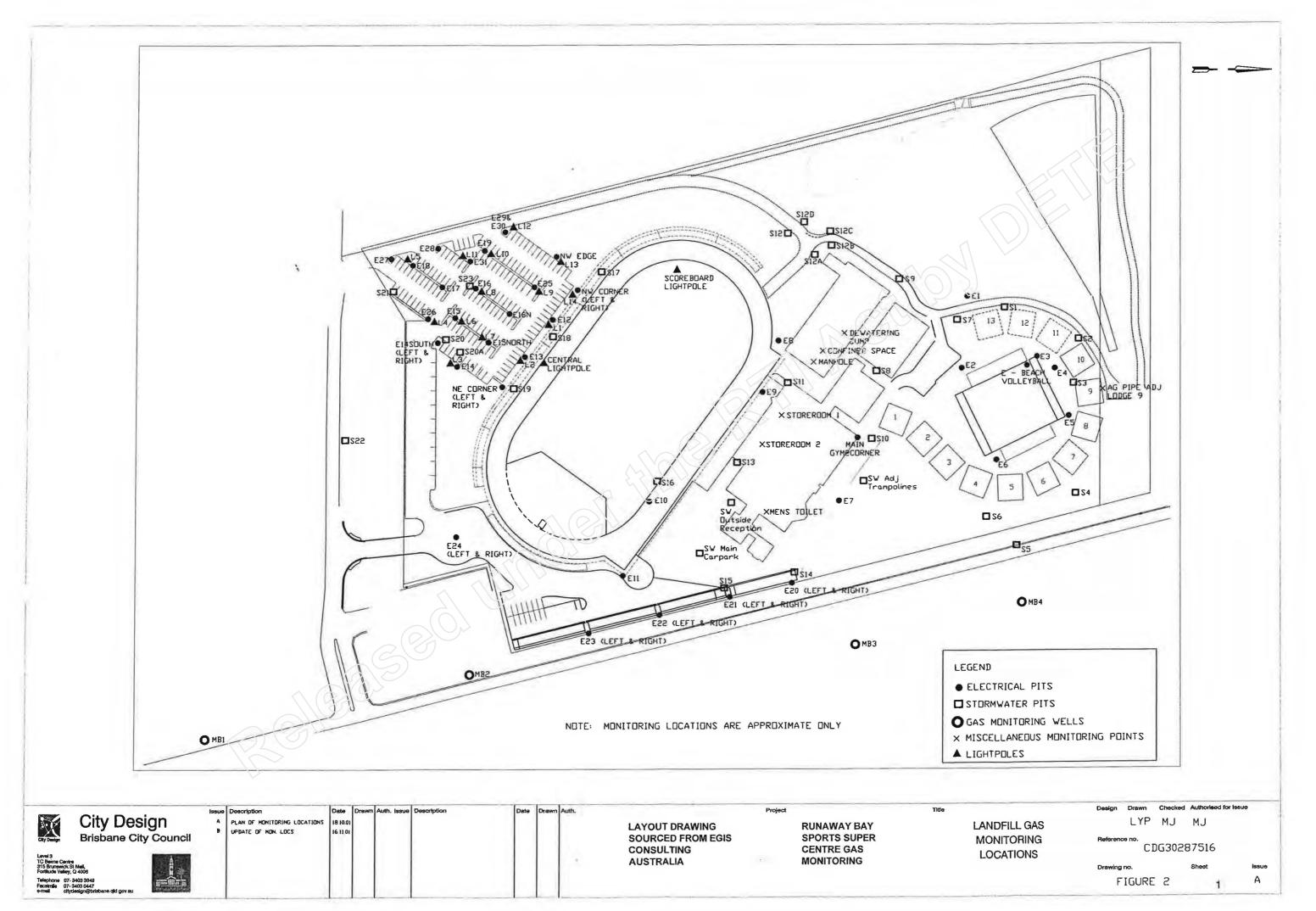
Attachment 1: Site Map of Landfill Gas Monitoring Locations

Attachment 2: Site sketch of additional service pits monitored

Attachment 3: Calibration Certificates and Specification Sheet for Meter

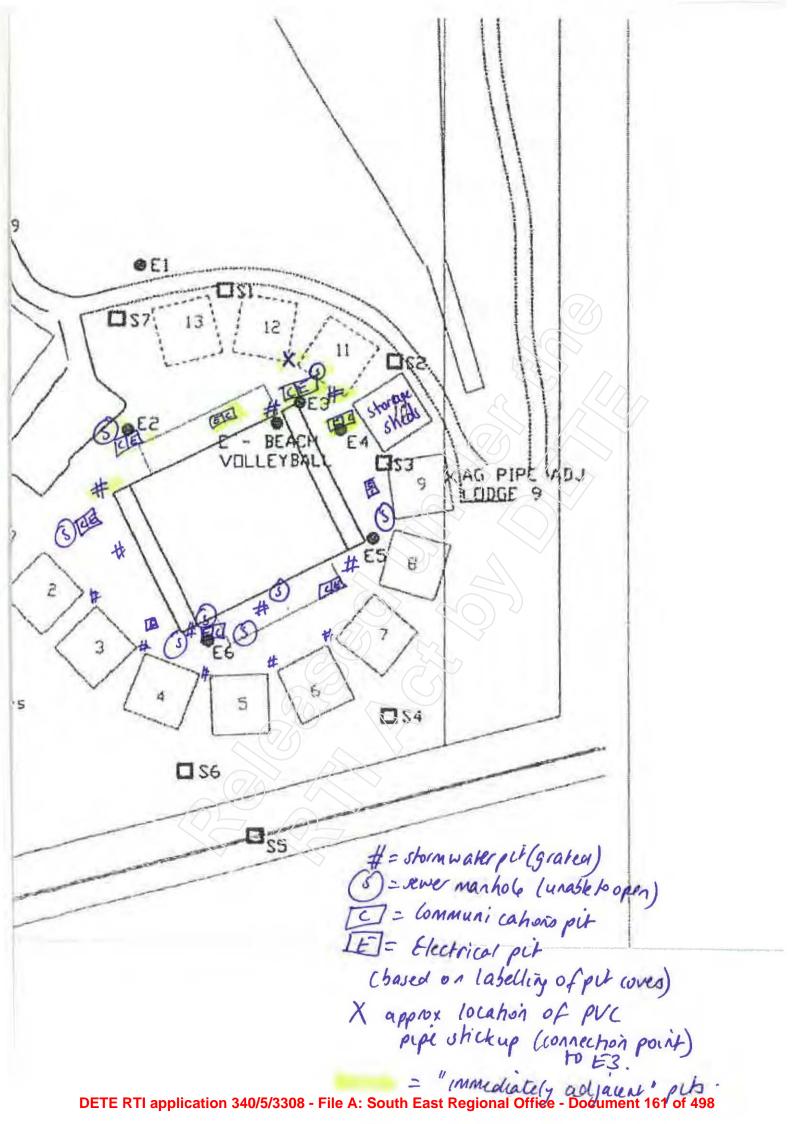
Attachment 4: Tables of results

- Table 1. General Weather Conditions and Site Observations
- Table 2. Boundary Soil Atmosphere Gas Monitoring Wells
- Table 3. Sub-surface Structure Emissions.
- Table 4. Detailed results 22 April 2013
- Table 5. Results 30 April 2013
- Table 6. Results 9 May 2013


Attachment 5: DBYD plans

Attachment 6:

- Memorandum to Runaway Bay Sport and Leadership Excellence Centre dated 27/5/13, document number 41/26317/448440 regarding "Landfill Gas Monitoring Round 22 April 2013"
- Memorandum to Runaway Bay Sport and Leadership Excellence Centre dated 27/5/13, document number 41/26317/44848 regarding " Landfill Gas Monitoring Round 30 April 2013"
- Memorandum to Runaway Bay Sport and Leadership Excellence Centre dated 27/5/13, document number 41/26317/44567 regarding " Landfill Gas Monitoring Round 9 May 2013"



Attachment 1: Site Map of Landfill Gas Monitoring Locations

Attachment 2: Site sketch of additional service pits monitored

Attachment 3: Calibration Certificates and Specification Sheet for Meter

This Gas Meter has been perform	nance checke	d / calibr	rated* as follows:				
Gas Channel	Cal Value				Readi	ng	Pass?
CH4 Check Only		0 % LEL		e	0	% LEL	Ø
	5	50 % LEI	L	ç	50	% LEL	Ø,
O2 Check Only).0 % vo	al de la constante de la consta	0 · 0 % vol		o % vol	Ø,
	1	8.0 % vo	ol	1 <	3.6	>% vol	đ
CO Check Only	B	100ppm		1 0	100	ppm	Ø
H2S Check Only	2	25.0 ррл	n	2	5	pprn	D d
Electrical Safety Tag attac	ched (AS/NZS	3760)	Tag No:			Valid to:	
Alkaline Batteries	Inline Filter Check		ilter Check	(\mathcal{I})		Cleaned	
Low alarm set at 10% (5000ppm)	Ø	High al (25,000	arm set at 50% Oppm)	\sum	Ø	Battery Status	@ V
* Calibration gas traceability information	tion is available	upon requ	uest.				
	113		Checked by:	4	5.	stir	~
Signed:			$\langle O \rangle$	\wedge			

Equipment Report - Eagle Multi-Gas Monitor

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Returned	Item
\Box		Eagle Multi Gas detector Ops check,
Ø		Liquid Inhibiting Probe with In-Line Filter
Ø		Carry Strap
Ø		Spare Alkaline Batteries Qty
\square		Operating Manual
		Quick Guide
٦Ź		Carry Case
Ø		Battery Status @ 6-2V .
		Check to confirm electrical safety (tag must be valid)

Processors Signature/ Initials

TFS Quote Reference		Condition on return
Customer Ref		
Equipment ID	EAGLE1	
Equipment serial no.	E25060	
Return Date & Time	1 1	

"We do more than give you great equipment ... We give you great solutions!"

Phone: (Free Call) 13	00 735 295	Environmental Assessment Technolog	ies Fax: (F	ree Call) 1800 675 123
Nelbourne Branch	Sydney Branch	Adelaide Branch	Brisbene Branch	Parth Branch
5 Caribbeen Drive,	Level 1, 4 Tslavera Road,	27 Beuleh Roed, Norwood,	Unit 2/5 Ross &t	121 Beringers Ave
Booreeby 3179	North Ryde 2113	South Australia 5067	Newsteed 4006	Melega WA 8090
Email: RentelsEnviroVIC@thermofisher.com	Email: RentistarwiroNSW@thermofisher	#.com Erneti: RentalsEnvisoSA@thermofisher.com	Emeil: RentelsEnviroQLD@thermofisher.cl	m Emeil: RentalsEnviroWA@thermofisher.com

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 163 of 4980538

Equipment Report - GEOTECHNICAL INSTRUMENTS GA2000

This Gas Meter has been performance checked / calibrated* as follows:

Calibration	Cal Value	Reading	Cal Value	Reading	Pass?
CH4	60% vol	60 %	0.00% vol	0.0%	5
CH4 -check only	2.5%CH4	2.5 %			0-
H2s	25ppm	25 ppm	0 ppm	25 ppm	9-
02	20.9% voi	20-9 %	0.00% vol	20.9 %	0
CO	100ppm	100 ppm	0 ppm	🔿 ppm	0
CO2	40% vol	40 %			0-
Operations Check		3			
Electrical Safety Tag att	ached (AS/NZS 3760)	Tag No: TEN S	002	/alio to: 8.7.	13
Cleaned/checked	In line Filte	er Check	Battery	Status @ 100%	

Date: Signed:

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Checked by:

KN

Sent	Returned	Item
V		Sampling Probe with in Line Filter
V		1m of Sampling Tube
M		Carry Strap
		Battery Charger and AC/DC Power Supply
R		Operating Quick Guide behind foam on lid of case
D		Manual behind foam on lid of case
V		Spare Inline Filters Qty (72-)
D.		Carry case
		Bate Cable and Software CD or Diskette
4		instrument Battery Status @ _ 1000 %
		Well cap Quick connect fitting
		Check to confirm electrical safety (tag must be valid)

Processors	Signature
Initi	als

TFS Quote Reference		Condition on return
Customer Ref		
Equipment ID	GA2000BD	
Equipment serial no.	GA10577/07	
Return Date	1 1	
Return Time	minde an earlier and an earlier for the	

	"We do more than	give you great	equipment	We give you	great solutions!"
--	------------------	----------------	-----------	-------------	-------------------

Phone: (Free Call) 1	300 735 295 E	nvironmental Assessment Technolo	gles	Fax: (Free	e Call) 1800 675 123
Melbourne Branch 5 Caribbean Orive Scorresby 3179 Email RentalsEnviroVIC@Inermofisher.com	Sydney Branch Level 1, 4 Talavera Rosd, North Ryde 2113 Ernail: RentalsEnviroNSW@thermofisher.com	Adelaide Branch 27 Geulah Rosd, Norwood, South Austriale 5097 Ernsil: RentalsErwiroSA@thermofisher.com	Brisbane Br. Unit 2/5 Ros Newsteed 4 Email: Rent	is St	Perth Branch 121 Beringarte Ave Malega WA 6090 Emel: RentalsErwiroWA@thermofisher.com
Issue 5		Oct 10	1 <u></u> _		G0540

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 164 of 498

Gas (hannel	Cal V	/alue					Readi	ng	Pass?
CH₄				0 % LEL				C) % LEL	0-
			Ę	50 % LEI	_			5	0 % LEL	D
O ₂			(0.0 % vo	1			0	O % vol	
		-	1	8.0 % vo	bl			1.3	3.0 % vol	
со		100ppm					LOD ppm			
H ₂ S		25.0 ppm		n		K	2	5 ppm	7/12	
	Electrical Safety Tag attac	hed (A	S/NZS	3760)	Tag No:				Valid to:	
9	Alkaline Batteries			Inline F	ilter Check	5	C	0	Cleaned	
	Low alarm set at 10	%		High al	arm set at	50	96.	0	Battery Status	5.50
* Calib	ration gas traceability informati	ion is av	vailable	upon requ	uest.	D		Æ		

Equipment Report – Eagle Multi-Gas Monitor

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Returned	Item
9		Eagle Multi Gas detector Ops check
		Liquid Inhibiting Probe with In-Line Filter
9		Carry Strap
D.		Spare Alkaline Batteries Qty _4
1		Operating Manual
		Quick Guide
9		Carry Case
	E S	Battery Status @ 5- 5v
		Check to confirm electrical safety (tag must be valid

Processors Signature/ Initials

TFS Quote Reference		Condition on return
Customer Ref		
Equipment ID	EAGBA	
Equipment serial no.	E47029	
Return Date & Time	1 1	

Phone: (Free Call) 1300 735 295		vironmental Assessment Technolo	gies	Fax: (Free Call) 1800 675 123		
Melbourne Branch 5 Canbbean Drive, Scoresby 3179 Email RentelsEnviroVIC@thermofisi	Sydney Branch Lavel 1 4 Talavera Road North Ryde 2113 Ernal RentalsEnviroNSW@thermofisher.com	Adelaide Branch 27 Beulah Road, Norwood, South Australia 5007 Email: RentalsEnviro5A@thermofisher came ile A: South East Regio		viroQLD@thermofisher.com	Perth Branch 121 Beringerna Ave Malage WA 8090 Ernall: RentelsEnviroWA@thermo5sher	

Equipment Report - GEOTECHNICAL INSTRUMENTS GA2000

This Gas Meter has been performance checked / calibrated* as follows:

hermo Fisher

SCIENTIFIC

	Reading	Cal Value	Reading	Pass?
60% vol	60 %	0.00% vol	%	Ø
2.5%CH4	2.4 %			Ø
25ppm	25 ppm	0 ppm	O. ppm	
20.9% vol	\$ P.Q	0.00% vci .	0.0%	Q/
100ppm	100 ppm	0 ppni	, 🗢 ppm	
40% vol	40%	K.		ē
			1	
NZS 3760)	Tag No:	·····.	/alid to:	
In line Filte	er Check	Battery	Status @1 200%	1995.99.20.20.20.20.20.20.20.20.20.20.20.20.20.
available upon r	equest.			
	2.5%CH4 25ppm 20.9% vol 100ppm 40% vol NZS 3760)	2.5%CH4 2.4 % 25ppm 2.5 ppm 20.9% vol 2.5 % 100ppm 1 ppm 40% vol 1 % NZS 3760) Tag No: 1	2.5%CH4 2.4 % 25ppm 2.5 ppm 0 ppm 20.9% vol	2.5%CH4 2.4 % 25ppm 2.5 ppm 0 ppm ppm 20.9% vol % 0.00% vol % 100ppm 1 % % 100ppm 1

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Returned	Item
		Sampling Probe with In-Line Filter
$\overline{\Delta}$		1m of Sampling Tube
$\Box 2/$		Carry Strap
		Battery Charger and AC/DC Power Supply
\square		Operating Quick Guide behind form on lid of case "
\square_{i}		Manual behind toam on lid of case "
\Box /		Spare Inline Filters Qty (2).
\square'		Carry case
$\Box /$		Data Cable and Software CD or Diskette
		Instructiont Battery Status @%
		Well cap Quick connect fitting

Check to confirm electrical safety (tag must be valid)

TFS Quote Reference			Condition on return
Customer Ref			
Equipment ID	GA2000BA		
Equipment serial no.	07844/05		
Return Date	1	1	
Return Time			

"We do more th	an give yo	u great equipment	. We give you	a great solutions!"
----------------	------------	-------------------	---------------	---------------------

Phone: (Free Call) 1	300 735 295 E	invironmental Assessment Technolo	gies	Fax: (Free	e Call) 1800 675 123
Melbourne Branch 5 Carlbbean Dirve Scoresby 3179 Email: RentalsEnviroVIC@thermolisher.com	Sydney Branch Levet 1, 4 Tatavera Road, North Ryde 2113 Email: RentalsEnviroNSW@thermofisher.com	Adeleide Branch 27 Beulah Road, Norwood, South Australia 5067 Email: RemaisEnviroSA@thumofisher.com	Brisbens & Unit 2/5 R Newstead Email: Re	oss SI	Perth Branch 121 Beringarra Ave Malage WA 6090 Email: RentalsEnviroWA@thermofisher.com
Issue 5		Oct 10			G0540

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 166 of 498

12

RENTALS

Equipment Report - Eagle Multi-Gas Monitor

Gas Channel	Cal Value				Readi	ng	Pass?
CH4 Check Only		0 % LEL			Ð	% LEL	Ø,
		50 % LEI	_	,	50	% LEL	Ø
O2 Check Only		0.0 % vo	1	C	o ∙ ⊙	// % vol	Ø
		18.0 % vo	lc	1 <	8.2	> % vol	Ø
CO Check Only	100 ppm)	-15	> ppm	Ø
H2S Check Only		25.0 ppm	n	25	5.4	D ppm	> d
Electrical Safety Tag attac	hed (AS/NZ	Ş 3760)	Tag No: N	/A		Valid to:	
Alkaline Batteries	D	Inline F	ilter Check		Ø	Cleaned	- Partition - Station - Sta
Low alarm set at 10% LE (5,000ppm)	L 🛛	High al (25,000	arm set at 50%)ppm)	S LEL	D	Battery Status:	6.1 1
* Calibration gas traceability informat	tion is available	e upon requ	uest.				
Date: 815	113	(Checked by:	-	5.1	ふナット	

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Returned	Item
\Box		Eagle Multi Gas detector Ops check,
Ø		Liquid Inhibiting Probe with In-Line Fifter
Ø		Carry Strap
Ø		Spare Alkaline Batteries Qiy 14
Ø		Operating Manual
Ø		Quick Guide
\Box		Carry Case
₽∕		Battery Status 6. 2 V .
		Check to confirm electrical safety (tag must be valid)

Processors Signature/ Initials

TFS Quote Reference		Condition on return
Customer Ref		
Equipment ID	EAGBB	
Equipment serial no.	E2A813	
Return Date & Time	1 1	

"We do more than give you great equipment ... We give you great solutions!"

Phone: (Free Call) 13	00 735 295	Environmental Assessment Techno	logies	Fax: (Free Call) 1800 675 123
Metbourne Branch 5 Catibbean Drive, Scorasby 3179 Email: RentaisEnviroVIC@thermolisher.com	Sydney Branch Level 1, 4 Televere Roed, North Ryde 2113 Emeil: RentalsEnviroNSW@thermofishe	Adelaide Brench 27 Beuleh Road, Norwood, South Austrelie 5007 Email: Rentale EnviroSA@thermofisher.com	Brisbane Branch Unit 2/5 Ross St Newsteed 4008 Ernelt: Rents/sEnvir	Parth Branch 121 Bartingerra Ave Malage VA e090 roQLD@thermofisher.com Emelt: RentaleEnviroWA@thermofisher.com

DETE RTI application 340/5/3308 - File A: South East Regional Office - Document 167 of 498538

Attachment 4: Tables of results

- Table 1. General Weather Conditions and Site Observations
- Table 2. Boundary Soil Atmosphere Gas Monitoring Wells
- Table 3. Sub-surface Structure Emissions.
- Table 4. Detailed results 22 April 2013
- Table 5. Results 30 April 2013
- Table 6. Results 9 May 2013

Runaway Bay Former Landfill: Spots Super Centre - Landfill Gas Management Strategy

Attachment 4 - TABLE 1: General Weather Conditions and Site Observations

Date	Atmosphe	eric Pressure	Wind Speed	Wind Direction (degrees)	Temp.	Weath	Weather Conditions		Comments	Initials
	(hPa)	Rising/Falling	(km/h)		(°C)	Current	Preceding Week	(mm)		
22-Apr-13	1014.3	Falling	20	315		Fine with 2/8 cloud cover and a light NW breeze	Mostly fine with one day of rainfall	32.4	Full site assessment. Vents operating effectively. Gas equipment measures CH4 >20ppm. Elevated methane in E3.	BO
30-Apr-13	1023.5	Falling	9	135		Fine with 2/8 cloud cover and a light SE breeze	Mostly fine	0	Partial assessment.	BO
9-May-13	1028.6	Falling	15	180	20.3	Fine with 4/8 cloud cover and a light S breeze	Light showers in the preceding week including the evening prior to monitoring.	2.8	Partial assessment.	BO

Notes
Atmospheric pressure, wind speed/ direction, temperature and daily rainfall data to be obtained from the Bureau of Meteorology, Gold Coast Seaway Station (No 40764.)

Runaway Bay SSC gas results, report table 1

31/05/2013

Attac	chment 4 - TAE	BLE 2: Bound	ary Soil Atmo	sphere Gas	Monitoring Wells

Location	Parameter	Units	22-Apr-13
MW1	CH₄	% (v/v)	NM
	H ₂ S	ppm	NM
	O ₂	% (v/v)	NM
MW2	CH ₄	% (v/v)	NM
	H ₂ S	ppm	NM
	O ₂	% (v/v)	NM
MW3	CH ₄	% (v/v)	NM
	H ₂ S	ppm	NM
	O ₂	% (v/v)	NM
MW4	CH ₄	% (v/v)	NM
	H ₂ S	ppm	NM
	O ₂	% (v/v)	NM

Notes:

Methane Trigger Level = 1.25 % v/v (Environmental Guidelines: Solid Waste Landfills, NSW EPA, 1996)

Shading indicates exceedance of trigger level

Bold indicates detection of methane

NM = Parameter not monitored this round

Runaway Bay SSC gas results, report table 2

31/05/2013